We propose AliMe Chat, an open-domain chatbot engine that integrates the joint results of Information Retrieval (IR) and Sequence to Sequence (Seq2Seq) based generation models. AliMe Chat uses an attentive Seq2Seq based rerank model to optimize the joint results. Extensive experiments show our engine outperforms both IR and generation based models. We launch AliMe Chat for a real-world industrial application and observe better results than another public chatbot.
In this paper, we present a fast and strong neural approach for general purpose text matching applications. We explore what is sufficient to build a fast and well-performed text matching model and propose to keep three key features available for inter-sequence alignment: original point-wise features, previous aligned features, and contextual features while simplifying all the remaining components. We conduct experiments on four well-studied benchmark datasets across tasks of natural language inference, paraphrase identification and answer selection. The performance of our model is on par with the state-of-the-art on all datasets with much fewer parameters and the inference speed is at least 6 times faster compared with similarly performed ones.
Information of protein 3-dimensional (3D) structures plays an essential role in molecular biology, cell biology, biomedicine, and drug design. Protein fold prediction is considered as an immediate step for deciphering the protein 3D structures. Therefore, protein fold prediction is one of fundamental problems in structural bioinformatics. Recently, numerous taxonomic methods have been developed for protein fold prediction. Unfortunately, the overall prediction accuracies achieved by existing taxonomic methods are not satisfactory although much progress has been made. To address this problem, we propose a novel taxonomic method, called PFPA, which is featured by combining a novel feature set through an ensemble classifier. Particularly, the sequential evolution information from the profiles of PSI-BLAST and the local and global secondary structure information from the profiles of PSI-PRED are combined to construct a comprehensive feature set. Experimental results demonstrate that PFPA outperforms the state-of-the-art predictors. To be specific, when tested on the independent testing set of a benchmark dataset, PFPA achieves an overall accuracy of 73.6%, which is the leading accuracy ever reported. Moreover, PFPA performs well without significant performance degradation on three updated large-scale datasets, indicating the robustness and generalization of PFPA. Currently, a webserver that implements PFPA is freely available on http://121.192.180.204:8080/PFPA/Index.html.
In this note, we establish some oscillation criteria for certain higher-order quasi-linear neutral differential equation. These criteria improve those results in the literature. Some examples are given to illustrate the importance of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.