SummaryMitochondrial alternative oxidase (AOX) is involved in a large number of plant physiological processes, such as growth, development and stress responses; however, the exact role of AOX in response to drought remains unclear. In our study, we provide solid evidences that the activated AOX capacity positively involved in ethylene‐induced drought tolerance, in tomato (Solanum lycopersicum), accompanied by the changing level of hydrogen peroxide (H2O2) and autophagy. In AOX1a‐RNAi plants, the ethylene‐induced drought tolerance was aggravated and associated with decreasing level of autophagy. The H2O2 level was relatively higher in AOX1a‐RNAi plants, whereas it was lower in AOX1a‐overexpressing (35S‐AOX1a‐OE) plants after 1‐(aminocarbonyl)‐1‐cyclopropanecarboxylic acid (ACC) pretreatment in the 14th day under drought stress. Interestingly, the accumulation of autophagosome was accompanied by the changing level of reactive oxygen species (ROS) in AOX transgenic tomato under drought stress whether or not pretreated with ACC. Pharmacological scavenging of H2O2 accumulation in AOX1a‐RNAi (aox19) stimulated autophagy acceleration under drought stress, and it seems that AOX‐dependent ROS signalling is critical in triggering autophagy. Lower levels of ROS signalling positively induce autophagy activity, whereas higher ROS level would lead to rapid programmed cell death (PCD), especially in ethylene‐mediated drought tolerance. Moreover, ethylene‐induced autophagy during drought stress also can be through ERF5 binding to the promoters of ATG8d and ATG18h. These results demonstrated that AOX plays an essential role in ethylene‐induced drought tolerance and also played important roles in mediating autophagy generation via balancing ROS level.
Crosstalk between phytohormone pathways is essential in plant growth, development and stress responses. Brassinosteroids (BRs) and ethylene are both pivotal plant growth regulators, and the interaction between these two phytohormones in the tomato response to salt stress is still unclear. Here, we explored the mechanism by which BRs affect ethylene biosynthesis and signaling in tomato seedlings under salt stress. The activity of 1-aminocyclopropane-1-carboxylate synthase (ACS), an ethylene synthesis enzyme, and the ethylene signaling pathway were activated in plants pretreated with BRs. Scavenging of ethylene production or silencing of ethylene signaling components inhibited BR-induced salt tolerance and blocked BR-induced activities of several antioxidant enzymes. Previous studies have reported that BRs can induce plant tolerance to a variety of environmental stimuli by triggering the generation of H2O2 as a signaling molecule. We also found that H2O2 might be involved in the crosstalk between BRs and ethylene in the tomato response to salt stress. Simultaneously, BR-induced ethylene production was partially blocked by pretreated with a reactive oxygen species scavenger or synthesis inhibitor. These results strongly demonstrated that ethylene and H2O2 play important roles in BR-dependent induction of plant salt stress tolerance. Furthermore, we also investigated the relationship between BR signaling and ethylene signaling pathways in plant processes responding to salt stress.
These authors contributed equally to this work.
SUMMARYBrassinosteroids (BRs) play essential roles in modulating plant growth, development and stress responses. Here, involvement of BRs in plant systemic resistance to virus was studied. Treatment of local leaves in Nicotiana benthamiana with BRs induced virus resistance in upper untreated leaves, accompanied by accumulations of H 2 O 2 and NO. Scavenging of H 2 O 2 or NO in upper leaves blocked BR-induced systemic virus resistance. BR-induced systemic H 2 O 2 accumulation was blocked by local pharmacological inhibition of NADPH oxidase or silencing of respiratory burst oxidase homolog gene NbRBOHB, but not by systemic NADPH oxidase inhibition or NbRBOHA silencing. Silencing of the nitrite-dependent nitrate reductase gene NbNR or systemic pharmacological inhibition of NR compromised BR-triggered systemic NO accumulation, while local inhibition of NR, silencing of NbNOA1 and inhibition of NOS had little effect. Moreover, we provide evidence that BR-activated H 2 O 2 is required for NO synthesis. Pharmacological scavenging or genetic inhibiting of H 2 O 2 generation blocked BR-induced systemic NO production, but BR-induced H 2 O 2 production was not sensitive to NO scavengers or silencing of NbNR. Systemically applied sodium nitroprusside rescued BR-induced systemic virus defense in NbRBOHB-silenced plants, but H 2 O 2 did not reverse the effect of NbNR silencing on BR-induced systemic virus resistance. Finally, we demonstrate that the receptor kinase BRI1(BR insensitive 1) is an upstream component in BR-mediated systemic defense signaling, as silencing of NbBRI1 compromised the BR-induced H 2 O 2 and NO production associated with systemic virus resistance. Together, our pharmacological and genetic data suggest the existence of a signaling pathway leading to BR-mediated systemic virus resistance that involves local Respiratory Burst Oxidase Homolog B (RBOHB)-dependent H 2 O 2 production and subsequent systemic NR-dependent NO generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.