Hybrid hexamers were made by refolding mixtures of two mutant forms of clostridial glutamate dehydrogenase. Mutant Cys320Ser (C320S) has a similar activity to the wild-type enzyme, but is unreactive with Ellman's reagent, 5,5′-dithiobis(2-nitrobenzoate) (DTNB). The triple mutant Lys89Leu/Ala163Gly/Ser380Ala (K89L/A163G/S380A), active with norleucine but not glutamate, is inactivated by DTNB, since the amino acid residue at position 320 is a cysteine residue. The chosen ratio favoured 1:5 hybrids of the triple mutant and C320S. The renatured mixture was treated with DTNB and separated on an NAD+–agarose column to which only C320S subunits bind tightly. Fractions were monitored for glutamate and norleucine activity and for releasable thionitrobenzoate to establish subunit stoichiometry. A fraction highly enriched in the 1:5 hybrid was identified. Homohexamers (C320S with 40mM glutamate and 1mM NAD+ at pH8.8, or K89L/A163G/S380A with 70mM norleucine and 1mM NAD+ at pH8.5) showed allosteric activation; succinate activated C320S approx. 50-fold (EC50 = 70mM, h = 2.4), and glutarate gave approx. 30-fold activation (EC50 = 35mM, h = 2.3). For the triple mutant, corresponding values were 80mM and 2.2 for succinate, and 75mM and 1.7 for glutarate, but maximal activation was only about 2-fold. In the 1:5 hybrid, with only one norleucine-active subunit per hexamer, responses to glutarate and succinate were still co-operative, and activation was more extensive than in the triple mutant homohexamer. A single norleucine-active subunit can thus respond co-operatively to a substrate analogue at the other five inactive sites. On the other hand, similar hyperbolic dependence on the norleucine concentration for the hybrid and the triple mutant homohexamer reflected the inability of C320S subunits to bind norleucine. With glutamate at pH8.8, an h value of 3.6 was obtained for the 1:5 hybrid, in contrast with an h value of 5.2 for the C320S homohexamer. The ‘foreign’ subunit evidently impedes inter-subunit communication to some extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.