PGE2 derived from LPS-stimulated Kupffer cells protects sinusoidal endothelial cells against storage/reperfusion injury. Unlike LPS, PGE2 improves graft function after liver transplants. Thus, donor preconditioning with PGE2 may be beneficial in liver transplants.
Kidneys preserved for transplantation surgery sustain injuries caused by cold ischemia during storage. Additionally, kidneys harvested from non-heart-beating donors encounter the stress of warm ischemia. The aim of this study was to determine the specific cell types losing viability after warm and cold ischemia. In warm ischemia studies, the pedicles of left kidneys of Lewis rats were cross-clamped for up to 90 min. In cold ischemia studies, kidneys were flushed with cold University of Wisconsin solution and stored up to 48h at 0-1 degrees C. After warm or cold ischemia, kidneys were perfused via the renal arteries with Krebs-Henseleit bicarbonate (KHB) buffer at 37 degrees C, followed by trypan blue to label the nuclei of nonviable cells. Warm ischemia for 90 min caused renal failure and led to injury of proximal tubular cells, e.g., loss of brush borders, cast formation and trypan blue labeling. Cold ischemia for 48 h also caused renal failure but, unlike warm ischemia, caused trypan blue labeling of glomerular podocytes and peritubular endothelial cells. In warm ischemia-induced injury, electron microscopy showed shedding of microvilli and marked swelling of proximal tubular cells, microvilli and mitochondria. In cold ischemia-induced injury, podocytes were blebbed and swollen, and their pedicels were detached from the basement membrane, but disruption in proximal tubules was milder. In conclusion, warm ischemia triggers injury primarily to proximal tubular cells, whereas cold ischemia damages glomerular podocytes and peritubular endothelial cells in addition to proximal tubules.
In rat models of liver preservation, the primary event leading to liver graft failure after cold storage is a reperfusion injury causing damage to sinusoidal endothelial cells and activation of Kupffer cells (KC). After storage for longer than 16 h in University of Wisconsin solution, reperfusion induces rapid endothelial cell killing. Kupffer cell activation also occurs as indicated by cell surface ruffling, degranulation, release of hydrolytic enzymes, generation of oxygen radicals, and increased phagocytosis. Down-regulation of KC activity with nisoldipine or pentoxifylline improves graft survival. Moreover, pretreatment of donors with small amounts of endotoxin to activate KC causes a drastic reduction of graft survival. Together, KC activation and endothelial damage cause marked microcirculatory disturbances after transplantation characterized by reduced and uneven blood flow and increased leucocyte and platelet adhesion. Such events culminate in inflammation, necrosis and fulminant graft failure. Modification of reperfusion conditions can reduce the extent of injury. In particular, flushing livers with Carolina rinse solution (CRS) at the end of storage reduces endothelial cell killing, suppresses KC activation, improves the microcirculation, and increases graft survival. Active ingredients in CRS include antioxidants (allopurinol, desferrioxamine and glutathione), adenosine and slightly acidic pH (6.5). Other potentially important ingredients are nicardipine, a calcium channel blocker, and fructose, glucose and insulin to promote glycolysis. The cytoprotective amino acid, glycine, further improves the performance of Carolina rinse solution. Reperfusion-induced changes to nonparenchymal cells play an essential role in damage to livers preserved for transplantation surgery. Understanding the role of sinusoidal endothelial cells and KC in this injury has led to promising new strategies to prolong organ storage and reduce graft failure.
Flushing renal explants with warm CRS before implantation diminishes cold ischemia-reperfusion injury and improves the function and survival of transplanted kidneys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.