Metaflumizone is a novel semicarbazone insecticide. It functions as a sodium channel blocker insecticide (SCBI) with excellent insecticidal activity on most economically important lepidopterous pests. This study assessed the resistance risk of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to metaflumizone in the laboratory and the effects of metaflumizone selection on toxicities to other insecticides. Spodoptera exigua collected from a field population at Huizhou in 2012 were successively challenged by metaflumizone to evaluate the risk of resistance evolution. Twelve generations of selection increased resistance to metaflumizone by 3.4-fold and threshold trait analysis revealed that the realized heritability (h2) of this resistance was 0.086. When h2 was equal to 0.086 and 90% of individuals were killed at each generation, LC50 to metaflumizone increased by 10-fold after 15 generations. The selection by metaflumizone did not increase the resistance to indoxacarb, chlorantraniliprole, spinosad, methomyl, or endosulfan, suggesting a lack of cross-resistance. However, metaflumizone challenge upheld the recession of resistance to emamectin benzoate, chlorfluazuron, and tebufenozide. The block of resistance drops by metaflumizone exposure implied a possible cross-resistance between metaflumizone and these three insecticides. These results contribute to integrated resistance management of S. exigua.
Postharvest strawberry is susceptible to gray mold disease caused by Botrytis cinerea, which seriously damage the storage capacity of fruits. Biological control has been implicated as an effective and safe method to suppress plant disease. The aim of this study is to evaluate the postharvest disease control ability of Bacillus cereus AR156 and explore the response of strawberry fruit to this biocontrol microorganism. Bacillus cereus AR156 treatment significantly suppressed gray mold disease and postponed the strawberry senescence during storage. The bacterium pretreatment remarkably enhanced the reactive oxygen-scavenging and defense-related activities of enzymes. The promotion on the expression of the encoding-genes was confirmed by quantitative real-time PCR (qRT-PCR) that significantly increased the expression of the marker genes of salicylic acid (SA) signaling pathway, such as PR1, PR2, and PR5, instead of that of the jasmonic acid (JA)/ethylene (ET) pathway, which was also shown. Moreover, through transcriptome profiling, about 6,781 differentially expressed genes (DEGS) in strawberry upon AR156 treatment were identified. The gene ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that AR156 altered the transcription of numerous transcription factors and genes involved in the SA-related plant disease resistance, metabolism, and biosynthesis of benzoxazinoids and flavonoids. This study offered a non-antagonistic Bacillus as a method for postharvest strawberry storage and disease control, and further revealed that the biocontrol effects were arisen from the induction of host responses on the transcription level and subsequent resistance-related substance accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.