Ti2C is one of the thinnest layers in MXene family with high potential for applications. In the present study, the adsorption of NH3, H2, CH4, CO, CO2, N2, NO2, and O2 on monolayer Ti2CO2 was investigated by using first-principles simulations to exploit its potential applications as gas sensor or capturer. Among all the gas molecules, only NH3 could be chemisorbed on Ti2CO2 with apparent charge transfer of 0.174 e. We further calculated the current-voltage (I-V) relation using the nonequilibrium Green's function (NEGF) method. The transport feature exhibits distinct responses with a dramatic change of I-V relation before and after NH3 adsorption on Ti2CO2. Thus, we predict that Ti2CO2 could be a promising candidate for the NH3 sensor with high selectivity and sensitivity. On the other hand, the adsorption of NH3 on Ti2CO2 could be further strengthened with the increase of applied strain on Ti2CO2, while the adsorption of other gases on Ti2CO2 is still weak under the same strain, indicating that the capture of NH3 on Ti2CO2 under the strain is highly preferred over other gas molecules. Moreover, the adsorbed NH3 on Ti2CO2 could be escapable by releasing the applied strain, which indicates the capture process is reversible. Our study widens the application of monolayer Ti2CO2 not only as the battery material, but also as the potential gas sensor or capturer of NH3 with high sensitivity and selectivity.
We used NMR spectroscopy, molecular modeling and infectivity competition assays to investigate the key interactions between the spike protein (VP8(*)) from 'sialidase-insensitive' human Wa and 'sialidase-sensitive' porcine CRW-8 rotaviruses and the glycans of gangliosides G(M1) and G(D1a). Our data provide strong evidence that N-acetylneuraminic acid is a key determinant for binding of these rotaviruses. This is in contrast to the widely accepted paradigm that sialic acids are irrelevant in host cell recognition by sialidase-insensitive rotaviruses.
Recently, a new two-dimensional (2D) carbon allotrope named penta-graphene was theoretically proposed ( Zhang , S. ; et al. Proc. Natl. Acad. Sci. U.S.A. 2015 , 112 , 2372 ) and has been predicted to be the promising candidate for broad applications due to its intriguing properties. In this work, by using first-principles simulation, we have further extended the potential application of penta-graphene as the anode material for a Li/Na-ion battery. Our results show that the theoretical capacity of Li/Na ions on penta-graphene reaches up to 1489 mAh·g, which is much higher than that of most of the previously reported 2D anode materials. Meanwhile, the calculated low open-circuit voltages (from 0.24 to 0.60 V), in combination with the low diffusion barriers (≤0.33 eV) and the high electronic conductivity during the whole Li/Na ions intercalation processes, further show the advantages of penta-graphene as the anode material. Particularly, molecular dynamics simulation (300 K) reveals that Li ion could freely diffuse on the surface of penta-graphene, and thus the ultrafast Li ion diffusivity is expected. Superior performance of penta-graphene is further confirmed by comparing with the other 2D anode materials. The light weight and unique atomic arrangement (with isotropic furrow paths on the surface) of penta-graphene are found to be mainly responsible for the high Li/Na ions storage capacity and fast diffusivity. In this regard, except penta-graphene, many other recently proposed 2D metal-free materials with pentagonal Cairo-tiled structures may be the potential candidates as the Li/Na-ion battery anodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.