Skid-steered wheeled vehicles are commonly adopted in outdoor environments with the benefits of mobility and flexible structure. However, different from Ackerman turning vehicles, skid-steered vehicles do not possess geometric constraint but only dynamic constraint when steered, which leads to motion control and state estimation problems for skid-steered vehicles. The controlling accuracy of a skid-steered vehicle depends largely on feedback state information from sensors and an observer. In this study, a 3-DOF dynamic model using a Brush nonlinear tire model is built, first, to model a 6 × 6 skid-steered wheeled vehicle in flat ground driving conditions. Then, an observer using the unscented Kalman filter with a strong tracking algorithm and adaptive noise matrix adjustment (AN-STUKF) is established to estimate vehicle motion states based on the 3-DOF dynamic model. Finally, the experiment is carried out in three different driving conditions to verify the accuracy and stability of the proposed method. The results show that the AN-STUKF method possesses better accuracy and tracking rate than the traditional UKF, and the phenomenon of ICRs shifting forward of the skid-steered wheeled vehicle is also verified.
With the increasing demand of military and civilian in the intelligent vehicles, the skid-steering theory has been widely used in unmanned ground vehicles, especially in unmanned military vehicles and unmanned surveillance platforms. Due to its driving environment complex and variable, which requires stricter dynamic control system. In order to improve the active safety performance of the skid-steering unmanned vehicle and develop the key technologies such as behavior decision planning technology, path tracking, and dynamic control technology, it is necessary to develop the dynamic state parameter observation system based on skid-steering theory. In this paper, an observation using Strong Track External Kalman Filter theory with noise matrix adaptive is designed to estimate vehicle kinematic parameters based on a 6 × 6 skid-steered unmanned vehicle. First, kinematic and dynamic model is built to analyze the characters of a skid-steered wheeled vehicle. Then a tire force estimation method based on dynamic model is presented to observe the tire longitude and vertical force. The tire force data is also used by Dugoff nonlinear model. Then an External Kalman Filter theory is designed to estimate vehicle kinematic parameters. To increase the accuracy and the robustness of the observer, the Strong Tracking EKF (STEKF) and noise adaptive adjustment is designed. Finally, a combined simulation using TruckSim and Simulink and the experiment using a 6 × 6 skid-steered unmanned vehicle verifies the efficiency of the observer. Results show that the observer is able to estimate the skid-steered wheeled vehicle states, and it also shows that the yaw rate result in the slip angle difference between each tire.
Skid-steered wheeled vehicles can be applied in military, agricultural, and other fields because of their flexible layout structure and strong passability. The research and application of vehicles are developing towards the direction of “intelligent” and “unmanned”. As essential parts of unmanned vehicles, the motion planning and control systems are increasingly demanding for model and road parameters. In this paper, an estimation method for tire and road parameters is proposed by combining offline and online identification. Firstly, a 3-DOF nonlinear dynamic model is established, and the interaction between tire and road is described by the Brush nonlinear tire model. Then, the horizontal and longitudinal stiffness of the tire is identified offline using the particle swarm optimization (PSO) algorithm with adaptive inertia weight. Referring to the Burckhardt adhesion coefficient formula, the extended forgetting factor recursive least-squares (EFRLS) method is applied to identify the road adhesion coefficient online. Finally, the validity of the proposed identification algorithm is verified by TruckSim simulation and real vehicle tests. Results show that the relative error of the proposed algorithm can be well controlled within 5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.