SignificanceThe optical method to determine oxygen saturation in blood is limited to only tissues that can be transilluminated. The status quo provides a single-point measurement and lacks 2D oxygenation mapping capability. We use organic printed optoelectronics in a flexible array configuration that senses reflected light from tissue. Our reflectance oximeter is used beyond conventional sensing locations and accurately measures oxygen saturation on the forehead. In a full system implementation, coupled with a mathematical model, we create 2D oxygenation maps of adult forearms under pressure-cuff–induced ischemia. Our skin-like flexible sensor system has the potential to transform oxygenation monitoring of tissues, wounds, skin grafts, and transplanted organs.
Gut microbiotas and their functions were significantly changed in obesity. More prospective studies on association and causality between microbiota and obesity are imperative and might contribute to the prevention, diagnosis, and treatment of obesity.
In higher plants, seed germination is followed by postgerminative growth. One of the key developmental events during postgerminative growth is cotyledon greening, which enables a seedling to establish photosynthetic capacity. The plant phytohormone abscisic acid (ABA) plays a vital role by inhibiting seed germination and postgerminative growth in response to dynamically changing internal and environmental cues. It has been shown that abscisic acid insensitive5 (ABI5), a basic leucine zipper transcription factor, is an important factor in the regulation of the ABA-mediated inhibitory effect on seed germination and postgerminative growth. Conversely, the phytohormone cytokinin has been proposed to promote seed germination by antagonizing the ABA-mediated inhibitory effect. However, the underpinning molecular mechanism of cytokinin-repressed ABA signaling is largely unknown. Here, we show that cytokinin specifically antagonizes ABA-mediated inhibition of cotyledon greening with minimal effects on seed germination in Arabidopsis (Arabidopsis thaliana). We found that the cytokinin-antagonized ABA effect is dependent on a functional cytokinin signaling pathway, mainly involved in the cytokinin receptor gene cytokinin response1/Arabidopsis histidine kinase4, downstream histidine phosphotransfer protein genes AHP2, AHP3, and AHP5, and a type B response regulator gene, ARR12, which genetically acts upstream of ABI5 to regulate cotyledon greening. Cytokinin has no apparent effect on the transcription of ABI5. However, cytokinin efficiently promotes the proteasomal degradation of ABI5 in a cytokinin signaling-dependent manner. These results define a genetic pathway through which cytokinin specifically induces the degradation of ABI5 protein, thereby antagonizing ABA-mediated inhibition of postgerminative growth.
Formation of somatic embryos from non-germline cells is unique to higher plants and can be manipulated in a variety of species. Previous studies revealed that overexpression of several Arabidopsis genes, including WUSCHEL (WUS)/PLANT GROWTH ACTIVATOR6 (PGA6), BABY BOOM, LEAFY COTYLEDON1 (LEC1), and LEC2, is able to cause vegetative-to-embryonic transition or the formation of somatic embryos. Here, we report that a gain-offunction mutation in the Arabidopsis PGA37 gene, encoding the MYB118 transcription factor, induced vegetative-toembryonic transition, the formation of somatic embryos from root explants, and an elevated LEC1 expression level. Double mutant analysis showed that WUS was not required for induction of somatic embryos by PGA37/MYB118. In addition, overexpression of MYB115, a homolog of PGA37/MYB118, caused a pga37-like phenotype. A myb118 myb115 double mutant did not show apparent developmental abnormalities. Collectively, these results suggest that PGA37/ MYB118 and MYB115 promote vegetative-to-embryonic transition, through a signaling pathway independent of WUS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.