The fatigue crack growth behavior and fracture toughness of EH36 thermo-mechanical control process (TMCP) steel were investigated by fatigue crack growth rate testing and fracture toughness testing at room temperature. Scanning electron microscopy was used to observe the fracture characteristics of fatigue crack propagation and fracture toughness. The results indicated that the microstructure of EH36 steel is composed of ferrite and pearlite with a small amount of texture. The Paris formula was obtained based on the experimental data, and the value of fracture toughness for EH36 steel was also calculated using the J-integral method. The observations conducted on fatigue fracture surfaces showed that there were a lot of striations, secondary cracks and tearing ridges in the fatigue crack propagation region. Additionally, there existed many dimples on the fracture surfaces of the fracture toughness specimens, which indicated that the crack was propagated through the mechanism of micro-void growth/coalescence. Based on the micromechanical model, the relationship between the micro-fracture surface morphology and the fracture toughness of EH36 steel was established.
E36 ship plate steel was, respectively, produced by as rolling and normalizing process (ARNP), and EH36 and FH36 ship plate steel was produced by the thermo-mechanical control process (TMCP) with low carbon and multi-element micro-alloying. The microstructure of the three grades of ship plate steel was composed of ferrite, pearlite, and carbides at room temperature. The average grain size on 1/4 width sections (i.e., longitudinal sections) of the three grades of ship plate steel was, respectively, 5.4 μm, 10.8 μm, and 11.9 μm. EH36 and FH36 ship plate steel had the higher strength due to precipitation and grain boundary strengthening effect, while the E36 ship plate steel had the lower strength due to the recovery phenomenon in the normalizing process. EH36 and FH36 ship plate steel had higher impact toughness due to lower carbon (C) and silicon (Si) content and higher manganese (Mn) content than E36 ship plate steel. E36 ship plate steel had the best plasticity due to the two strong {110} and {111} texture components. The fracture toughness KJ0.2BL(30) values of E36 and EH36 and KJ0.2BL value of FH36 ship plate steel were, respectively, obtained at 387 MPa·m1/2, 464 MPa·m1/2 and 443 MPa·m1/2. EH36 and FH36 ship plate steel had higher KJ0.2BL(30) due to lower C and Si and higher Mn, niobium (Nb), vanadium (V), and aluminum (Al) content than the E36 ship plate steel. The fatigue crack growth rate of E36 ship plate steel was higher than that of EH36 and FH36 ship plate steel due to its higher carbon content and obviously smaller grain size. The analysis results and data may provide a necessary experimental basis for quantitatively establishing the relationship between fracture toughness, yield strength and impact toughness, as well as the relationship between fatigue crack growth rate and both strength and fracture toughness.
Improving the mechanical performance of low-carbon offshore steel is of great significance in shipbuilding applications. In this paper, a new Cu-Cr microalloyed offshore structural steel (FH36) was developed based on EH36. The microstructure, mechanical properties, and fatigue crack propagation properties of rolled plates of FH36, EH36, and normalizing rolled EH36 plates (EH36N) manufactured by a thermo-mechanical control process (TMCP) were analyzed and compared (to simplify, the two rolled specimens are signified by FH36T and EH36T, respectively). FH36T showed an obvious advantage in elongation with the value of 29%, 52.2% higher than the EH36T plates. The normalizing process led to a relatively lower yield stress (338 MPa), but substantially increased the elongation (33%) and lessened the yield ratio from 0.77 to 0.67. Electron back-scattered diffraction (EBSD) analysis showed that SFs of the deformation texture of FH36T and EH36N along the transverse direction (TD) and normal direction (ND) were much higher than those of the EH36T plate, which enhanced the lateral movement ability in the width and thickness direction, enhancing the ductility. Moreover, FH36 plates showed a better fatigue crack propagation resistance than rolled EH36 plates. The formation of the jagged shape grain boundaries is believed to induce a decrease of effective stress intensity factor during the fatigue crack propagation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.