Polyoxometalates (POMs) were self-assembled on cetyltriethylammonium bromide-covered gold nanorods and formed periodic POM rings, which could be used as templates for the synthesis of Ag nano-rings.
, singlelayer networks of covalently linked monomers, show perspectives as membranes and in electronics. However, 2D polymerization of monomers in orthogonal directions limited the formation of 2DPs on nanoparticles (NPs) with high surface curvatures. Here we propose a high-curvature 2D polymerization to form a single-layer 2DP network as a non-contacting ligand on the surface of NPs for their stabilization and functionalization. The high-curvature 2D polymerization of amphiphilic Gemini monomers was conducted in situ on surfaces of NPs with various sizes, shapes, and materials, forming highly cross-linked 2DPs. Selective etching of core-shell NPs led to 2DPs as a non-contact ligand of yolk-shell structures with excellent shape retention and high NPsurface accessibility. In addition, by copolymerization, the 2DP ligands can covalently link to other functional molecules. This work promotes the development of 2DPs on NPs for their functional modification.
, singlelayer networks of covalently linked monomers, show perspectives as membranes and in electronics. However, 2D polymerization of monomers in orthogonal directions limited the formation of 2DPs on nanoparticles (NPs) with high surface curvatures. Here we propose a high-curvature 2D polymerization to form a single-layer 2DP network as a non-contacting ligand on the surface of NPs for their stabilization and functionalization. The high-curvature 2D polymerization of amphiphilic Gemini monomers was conducted in situ on surfaces of NPs with various sizes, shapes, and materials, forming highly cross-linked 2DPs. Selective etching of core-shell NPs led to 2DPs as a non-contact ligand of yolk-shell structures with excellent shape retention and high NPsurface accessibility. In addition, by copolymerization, the 2DP ligands can covalently link to other functional molecules. This work promotes the development of 2DPs on NPs for their functional modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.