Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), the research focus in immune checkpoint regulation, play an important role in tumor immunotherapy. Inhibitors of this pathway are also the focus of tumor immunotherapy research. The PD-1/PD-L1 pathway can be blocked by selective binding to PD-L1. Clinical trials have been conducted in a variety of patients with advanced solid tumors. CS1001 is a high-affinity humanized full-length anti-PD-L1 monoclonal antibody with great clinical significance. We constructed a PD-L1-targeted radioactive molecular probe, 124/125 I-labeled full-length antibody CS1001, and evaluated its binding specificity and targeting ability to PD-L1 in tumor cells and tumor models. Additionally, a comparison study with 68 Ga-WL12, a PD-L1 targeting peptide, was conducted. The binding potency of 125 I-CS1001 to human PD-L1 was evaluated by enzyme-linked immunosorbent assay (ELISA), and the K d value was 52.1 ± 19.3 nM. The cellular uptake of 125 I-CS1001 was examined in Chinese hamster ovary cells (CHO) and CHO expressing human PD-L1 (CHO-hPD-L1). At 2 h, the uptake values of 125 I-CS1001 in CHO-hPD-L1 without blocking and in the presence of 0.1 mg non-radiolabeled CS1001 were 3.60 ± 0.08 and 0.09 ± 0.005 (%AD/2 × 10 5 cells, p < 0.001). Micro-PET imaging was performed between 8 to 192 h after injection of 124 I-CS1001 into normal KM mice and CHO-hPD-L1 and HeLa tumor models. The standard uptake value (SUV) of relevant organs in PET images was calculated by drawing regions of interest (ROI). SUV mean of CHO-hPD-L1 tumors was significantly higher than that of HeLa tumors at 48 h (1.98 ± 0.04 vs 0.73 ± 0.14, p = 0.005). The SUV mean of 124 I-CS1001 in CHO-hPD-L1 tumors at 48 h was higher than that of 68 Ga-WL12 in CHO-hPD-L1 tumors at 0.5 h (1.98 ± 0.04 vs 1.09 ± 0.1 SUV mean , p = 0.007). In conclusion, this work provides a new method for monitoring and evaluating the in vivo expression of PD-L1 in tumors.
Programmed cell death-ligand 2 (PD-L2) is an important emerging molecule of the immune checkpoint, which is closely related to the prognosis of patients with immune checkpoint inhibitor (ICI) therapy. The quantification of PD-L2 can provide a potential reference for patients who benefit from ICI treatment. In this study, we used iodine isotope (nat/124/125I)-labeled PD-L2 antibody (ATL2) to noninvasively detect PD-L2 expression in mice with human lung adenocarcinoma A549 cell lines. The radiochemical yields of 125I-ATL2 and 124I-ATL2 were 73.56 ± 3.72% and 69.46 ± 2.05%, respectively. The radiochemical purity (RCP) of the tracers was more than 99%. The positive cell line A549-PDL2 was constructed by lentivirus. Western blot, immunofluorescence, and flow cytometry indicated that the A549-PDL2 cells showed a higher PD-L2 protein level than the A549 cells. The dissociation constant of 125I-ATL2 binding to the PD-L2 protein was 7.25 nM. Cellular uptake experiments confirmed that the uptake of 125I-ATL2 in A549-PDL2 cells was higher than that in A549 cells at each time point (P < 0.0001). Micro-PET/CT showed significant uptake in the tumor region of A549-PDL2 tumor-bearing mice 24 h postinjection of 124I-ATL2 compared with that of other groups (SUVmax = 0.75 ± 0.06, 0.19 ± 0.07, and 0.27 ± 0.05, respectively). Consistently, the biodistribution of the tracers at 24 h postinjection showed a higher tumor uptake in A549-PDL2 mice (7.11 ± 0.38 %ID/g for 124I-ATL2 in A549-PDL2 mice vs 2.72 ± 0.15 %ID/g for 124I-ATL2 in A549 mice vs 3.89 ± 0.65 %ID/g for 124I-IgG in A549-PDL2 mice). The dosimetry estimation by using Olinda software showed that the effective dose of 124I-ATL2 was 3.62 × 10–2 mSv/MBq, which is within the range of acceptable doses. Immunohistochemical results further confirmed that the expression of PD-L2 in the tumor tissues of A549-PDL2-bearing mice was higher than that of the A549 model mice. In conclusion, the development of 124/125I-ATL2 provides the first noninvasive quantification of PD-L2 expression in lung cancer by molecular imaging, which provides a new reference for screening potential beneficiaries of ICI therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.