This paper focuses on oxidation reactivity and nanostructural characteristics of particulate matter (PM) emitted from diesel engine fuelled with different volume proportions of diesel/polyoxymethylene dimethyl ethers (PODEn) blends (P0, P10 and P20). PM was collected using a metal filter from the exhaust manifold. The collected PM samples were characterized using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The TGA results indicated that the PM produced by P20 had the highest moisture and volatility contents and the fastest oxidation rate of solid carbon followed by P10 and P0 derived PM. SEM analysis showed that PM generated from P20 was looser with a lower mean value than PM emitted from P10 and P0. Quantitative analysis of high-resolution TEM images presented that fringe length was reduced along with increased separation distance and tortuosity with an increase in PODEn concentration. These trends improved the oxidation reactivity. According to Raman spectroscopy data, the intensity, full width at half-maximum and intensity ratio of the bands also changed demonstrating that PM nanostructure disorder was correlated with a faster oxidation rate. The results show the use of PODEn affects the oxidation reactivity and nanostructure of PM that is easier to oxidize.
Magneto-sensitive elastomers (MSEs) are composite materials with ferromagnetic particles embedded in rubber matrices. Their mechanical properties can be changed by applying an external magnetic field. Although their stiffness and damper properties have been extensively studied, only a few studies have been involved with their magnetostriction behaviors, which have potential applications in sensors. To observe the interaction mechanisms between mechanical and magnetic fields and to investigate the magnetostrictive effect numerically, a novel magneto-structural coupling algorithm was developed. A magnetostrictive test system was also developed and fabricated for validating the simulation method. Several MSE samples embedded with millimeter-sized particles were fabricated and tested. The simulation results agreed well with the experimental results. Also both of them showed negative magnetostrictive strains for the specified samples and test conditions in this study. The contributions of four influencing factors were evaluated, and some results were concluded. Before magnetic saturation, the bigger the magnetic field strength is, the stronger the magnetostrictive effect is, and their relationship follows a quadratic polynomial expression. The closer the distance between two adjacent particles is, the stronger the magnetostrictive effect is, and their relationship satisfies a cubic polynomial equation. The higher the particle volume fraction is, the stronger the magnetostrictive effect is, and there is a linear relationship between them. The particle diameter has little influence on the magnetostrictive effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.