The NCEP–NCAR reanalysis, NCEP Climate Forecast System Reanalysis (CFSR), 40-yr ECMWF Re-Analysis (ERA-40), and interim ECMWF Re-Analysis (ERA-Interim) products are evaluated with sounding observations from an enhanced radiosonde network available every 6 h during the Tibetan Plateau Experiment (TIPEX) conducted from 10 May to 9 August 1998. This study uses more than 3000 high-quality, independent rawinsondes at 11 stations (which were not assimilated in any of the reanalyses), which represents the first time that such a comprehensive evaluation is performed to assess the quality of these four most widely used reanalysis products over this region, which is highest in the world and crucial to the global climate and weather. Averaging over the entire three-month period, it is found that each reanalysis dataset produces mean values of temperature and horizontal winds consistent with the verifying soundings (indicating relatively small mean bias); however, there are considerable differences (biases) in the mean relative humidity. On average, except for temperature at higher levels, both newer-generation reanalyses (CFSR and ERA-Interim) have smaller root-mean-square (RMS) error and bias than their predecessors (NCEP–NCAR and ERA-40). With some exceptions, the RMS errors of all variables for both CFSR and ERA-Interim (verifying with soundings) are similar in magnitude to the RMS difference between these two reanalyses, all of which are approximately twice as large as the corresponding observation errors. It is also found that there are strong diurnal variations in both RMS error and mean bias that differ greatly among different reanalyses and at different pressure levels.
This study explores the diurnal variations of the warm-season precipitation to the east of the Tibetan Plateau over China using the high-resolution NOAA/Climate Prediction Center morphing technique (CMORPH) precipitation data and the Global Forecast System (GFS) gridded analyses during mid-May to mid-August of 2003-09. Complementary to the past studies using satellite or surface observations, it is found that there are strong diurnal variations in the summertime precipitation over the focus domain to the east of the Tibetan Plateau. These diurnal precipitation cycles are strongly associated with several thermally driven regional mountain-plains solenoids due to the differential heating between the Tibetan Plateau, the highlands, the plains, and the ocean. The diurnal cycles differ substantially from region to region and during the three different month-long periods: the pre-mei-yu period (15 May-15 June), the mei-yu period (15 June-15 July), and the post-mei-yu period (15 July-15 August).In particular, there is a substantial difference in the propagation speed and eastward extent of the peak phase of the dominant diurnal precipitation cycle that is originated from the Tibetan Plateau. This diurnal peak has a faster (slower) eastward propagation speed, the more (less) coherent propagation duration, and thus covers the longest (shortest) distance to the east during the pre-mei-yu (post-mei-yu) period than that during the mei-yu period. The differences in the mean midlatitude westerly flow and in the positioning and strength of the western Pacific subtropical high during different periods are the key factors in explaining the difference in the propagation speed and the eastward extent of this dominant diurnal precipitation cycle.
During the presummer rainy season (April–June), southern China often experiences frequent occurrences of extreme rainfall, leading to severe flooding and inundations. To expedite the efforts in improving the quantitative precipitation forecast (QPF) of the presummer rainy season rainfall, the China Meteorological Administration (CMA) initiated a nationally coordinated research project, namely, the Southern China Monsoon Rainfall Experiment (SCMREX) that was endorsed by the World Meteorological Organization (WMO) as a research and development project (RDP) of the World Weather Research Programme (WWRP). The SCMREX RDP (2013–18) consists of four major components: field campaign, database management, studies on physical mechanisms of heavy rainfall events, and convection-permitting numerical experiments including impact of data assimilation, evaluation/improvement of model physics, and ensemble prediction. The pilot field campaigns were carried out from early May to mid-June of 2013–15. This paper: i) describes the scientific objectives, pilot field campaigns, and data sharing of SCMREX; ii) provides an overview of heavy rainfall events during the SCMREX-2014 intensive observing period; and iii) presents examples of preliminary research results and explains future research opportunities.
The spatial variability and diurnal propagation of mean precipitation in the summer rainy seasons (from 2003 to 2010) over the Sichuan basin (SCB) and adjacent mountainous regions are examined using high spatiotemporal resolution satellite-derived precipitation estimates. The SCB is located just east of the Tibetan Plateau (TP) and is prone to heavy precipitation that often peaks over nighttime and early morning. The large-scale environment over the SCB during the rainy season is characterized by weak low- to midtropospheric convergence in the lee of the TP and by the upper-tropospheric jet stream to the north. Under this flow configuration, the study links the unique diurnal variations in the precipitation pattern and propagation to the unique topography in this region. It is found that during the rainy season, the local diurnal precipitation maximum moves primarily downslope and southeastward, from over the TP in the daytime to SCB at night. A secondary maximum moves northeastward downslope of the Yunnan–Guizhou Plateau toward the SCB from late evening to the early morning. The movement of precipitation over the SCB and the adjacent regions is closely tied to multiple regional-scale mountain–plain solenoids because of the large contrast in terrain heights between the basin and surrounding mountain ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.