Aims
Aging is the most significant contributor to the increasing prevalence of atrial fibrillation (AF). The gut microbiota dysbiosis is involved in age-related diseases. However, whether the aged-associated dysbiosis contributes to age-related AF is still unknown. Direct demonstration that the aged gut microbiota is sufficient to transmit the enhanced AF susceptibility in a young host via microbiota-intestinal barrier-atria axis has not yet been reported. This study aimed to determine whether gut microbiota dysbiosis affects age-related AF.
Methods and Results
Herein, by using a fecal microbiota transplantation (FMT) rat model, we demonstrated that the high AF susceptibility of aged rats could be transmitted to a young host. Specially, we found the dramatically increased levels of circulating lipopolysaccharide (LPS) and glucose led to the up-regulated expression of NLR family pyrin domain containing 3 (NLRP3)-inflammasome, promoting the development of AF which depended on the enhanced atrial fibrosis in recipient host. Inhibition of inflammasome by a potent and selective inhibitor of the NLRP3 inflammasome, MCC950, resulted in a lower atrial fibrosis and AF susceptibility. Then we conducted cross-sectional clinical studies to explore the effect of aging on the altering trends with glucose levels and circulating LPS among clinical individuals in two China hospitals. We found that both of serum LPS and glucose levels were progressively increased in elderly patients as compared with those young. Furthermore, the aging phenotype of circulating LPS and glucose levels, intestinal structure and atrial NLRP3-inflammasome of rats were also confirmed in clinical AF patients. Finally, aged rats colonized with youthful microbiota restored intestinal structure and atrial NLRP3-inflammasome activity, which suppressed the development of aged-related AF.
Conclusions
Collectively, these studies described a novel causal role of aberrant gut microbiota in the pathogenesis of age-related AF, which indicates that the microbiota-intestinal barrier-atrial NLRP3 inflammasome axis may be a rational molecular target for the treatment of aged-related arrhythmia disease.
Translational Perspective
The current study demonstrates that aged-associated microbiota dysbiosis promotes AF in part through a microbiota–gut–atria axis. Increased AF susceptibility due to enhanced atrial NLRP3-inflammasome activity by LPS and high glucose was found in an aged FMT rat model, and also confirmed within elderly clinical individuals. In a long-term FMT rat study, the AF susceptibility was ameliorated by treatment with youthful microbiota. The present findings can further increase our understanding of aged-related AF and address a promising therapeutic strategy that involves modulation of gut microbiota composition.
This study was performed to characterize the bone metabolism in ten 6-month-old male Goto-Kakizaki (GK) rats, a spontaneous type 2 diabetic model, with ten age- and sex-matched non-diabetic Wistar rats as controls. The femora and the fifth lumbar vertebrae were analyzed by a dual energy X-ray absorptiometry for bone mineral density. Histomorphometrical analyses were performed on the sections from the tibia embedded in methylmethacrylate. Biomechanical characterizations were made by a three-point bending test and a compressive test on the femur and the fifth vertebral body respectively. Compared to the control rats, the bone mineral density was significantly deceased and the histomorphometrical studies showed significantly decreased trabecular bone volume, trabecular thickness and number, osteoid surface and thickness, mineralizing surface, mineral apposition rate and bone formation rate, and also a significant increase in mineralization lag time in the diabetic rats. Strength in both bones and elastic modulus of vertebral body significantly decreased in the diabetic rats as well. In addition, the serum osteocalcin levels were significantly decreased and the serum tartrate-resistant acid phosphatase activity was significantly increased. In conclusion, the 6-month-old GK diabetic rats developed osteopenia with an increased risk of fracture owing to the decreased bone formation, and might be a useful model for unraveling the effects of diabetes on bones independent of obesity frequently seen in the type 2 diabetic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.