No abstract
The relationships of extant and extinct lineages of Adephaga were analysed formally for the first time. Emphasis is placed on the aquatic and semiaquatic groups and their evolution in the Mesozoic. †Triadogyrus and †Mesodineutus belong to Gyrinidae, the sister group of the remaining families. †Triaplidae are the sister group of the following groups (Haliplidae, Geadephaga, Dytiscoidea incl. †Liadytidae, †Parahygrobiidae and †Coptoclavidae [major part]). The lack of a ventral procoxal joint and a very short prosternal process are plesiomorphies of †Triaplidae. †Coptoclavidae and †Timarchopsinae are paraphyletic. †Timarchopsis is placed in a geadephagan clade. In contrast to other coptoclavids, its metathorax is close to the condition found in Haliplidae, with a complete transverse ridge and coxae with large plates and free mesal walls. †Coptoclavidae s.str., i.e. excl. †Timarchopsis, is a dytiscoid subgroup. The mesal metacoxal walls are fused, the coxal plates are reduced, and the transverse ridge is absent. †Stygeonectes belongs to this dytiscoid coptoclavid unit and is therefore misplaced in †Timarchopsinae. †Liadytidae belongs to a dytiscoid subgroup, which also comprises the extant families Aspidytidae, Amphizoidae, Hygrobiidae and Dytiscidae. †Parahygrobia is the sister group of Hygrobiidae. The larvae are characterized by a broad gula, the absence of the lacinia, retractile maxillary bases and very long urogomphi set with long setae. †Liadytiscinae is the sister group of extant Dytiscidae. There is no support for a clade †Eodromeinae and for Trachypachidae incl. †Eodromeinae. †Fortiseode is nested within Carabidae. The exclusion of fossil taxa has no effect on the branching pattern. The evolution of Adephaga in the Mesozoic is discussed. Possible reasons for the extinction of †Coptoclavidae are the rise of teleost fish and the competition of Gyrinidae and Dytiscidae, which possess efficient defensive glands and larval mandibular sucking channels.
Cerambycidae (longhorn beetles) and related families in the superfamily Chrysomeloidea are important components of forest ecosystems and play a key role in nutrient cycling and pollination. Using full mitochondrial genomes and dense taxon sampling, the phylogeny of Chrysomeloidea with a focus on Cerambycidae and allied families was explored. We used 151 mitochondrial genomes (75 newly sequenced) covering all families and 29 subfamilies of Chrysomeloidea. Our results reveal that (i) Chrysomelidae (leaf beetles) are sister to all other chrysomeloid families; (ii) Cerambycidae sensu stricto (s. s.) is polyphyletic due to the inclusion of other families that split Cerambycidae into a ‘lamiine’ clade comprising Lepturinae sensu lato (s. l.) + (Lamiinae + Spondylidinae) and a ‘cerambycine’ clade comprising Dorcasominae + (Cerambycinae + Prioninae s. l.); (iii) the subfamilies within the two clades of Cerambycidae s. s. were monophyletic, except for the placement of Necydalinae nested in Lepturinae, and the placement of Parandrinae within Prioninae (now considered as tribes Necydalini and Parandrini, respectively); (iv) smaller families were grouped into two major clades: one composed of Disteniidae+Vesperidae and the other composed of Orsodacnidae + (Megalopodidae + Oxypeltidae); (v) relationships among the four major clades were poorly supported but were resolved as ((cerambycines + (Disteniidae + Vesperidae) + Orsodacnidae + (Megalopodidae + Oxypeltidae)) + lamiines. Divergence time analyses estimated that Chrysomeloidea originated ca. 154.1 Mya during the late Jurassic, and most subfamilies of Cerambycidae originated much earlier than subfamilies of Chrysomelidae. The diversification of families within Chrysomeloidea was largely coincident with the radiation of angiosperms during the Early Cretaceous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.