ObjectivesThe underlying mechanism of the inflammatory response against Brucellosis caused by Brucella remains poorly understood. This study aimed to determine the role of long non-coding RNAs (lncRNAs) in regulating of inflammatory and anti-Brucella responses.Materials and methodsMicroarray analysis was performed to detect differentially expressed lncRNAs in THP-1 cells infected with an S2308 Brucella strain. The candidate lncRNAs were screened using bioinformatic analysis and siRNAs; bioinformatic prediction and luciferase reporter assay were also conducted, while inflammatory responses was assessed using RT‐qPCR, western blot, immunofluorescence, ELISA, HE, and immunohistochemistry.ResultsThe lncRNA Gm28309 was identified to be involved in regulating inflammation induced by Brucella. Gm28309, localized in the cytoplasm, was down-expressed in RAW264.7 cells infected with S2308. Overexpression of Gm28309 or inhibition of miR-3068-5p repressed p65 phosphorylation and reduced NLRP3 inflammasome and IL-1β and IL-18 secretion. Mechanistically, Gm28309 acted as a ceRNA of miR-3068-5p to activate NF-κB pathway by targeting κB-Ras2, an inhibitor of NF-κB signaling. Moreover, the number of intracellular Brucella was higher when Gm28309 was overexpressed or when miR-3068-5p or p65 was inhibited. However, these effects were reversed by the miR-3068-5p mimic.ConclusionsOur study demonstrates, for the first time, that LncRNAs are involved in regulating immune responses during Brucella infection, and Gm28309, an lncRNA, plays a crucial role in activating NF-κB/NLRP3 inflammasome signaling pathway.
Despite the recognized epidemiological importance of ticks as vectors for pathogens that cause numerous zoonotic and veterinary diseases, data regarding the pathogens of pet dogs and their parasitic ticks in the Junggar Basin are scarce. In this study, a total of 178 blood samples and 436 parasitic ticks were collected from pet dogs in Junggar Basin, Xinjiang Uygur Autonomous Region (XUAR), north-western China. All ticks were identified as Rhipicephalus turanicus sensu stricto (s.s.) according to morphological and molecular characteristics. Rh. turanicus s.s. ticks were collected from pet dogs in China for the first time. Seven tick-borne pathogens, such as Ehrlichia chaffeensis, Anaplasma phagocytophilum, Rickettsia massiliae, Candidatus R. barbariae, Brucella spp., Rickettsia sibirica, and Anaplasma ovis, were detected from ticks, whereas the first five bacteria were detected from blood samples of dogs. Brucella spp. was the most predominant pathogen in both blood samples and ticks of pet dogs, with the detection rates of 16.29 and 16.74%, respectively. Moreover, 17 ticks and 1 blood sample were co-infected with two pathogens, and 1 tick was co-infected with three pathogens. This study provided molecular evidence for the occurrence of Anaplasma spp., Ehrlichia spp., Rickettsia spp., and Brucella spp. circulating in pet dogs and their parasitic ticks in Junggar Basin, north-western China. These findings extend our knowledge of the tick-borne pathogens in pet dogs and their parasitic ticks in Central Asia; therefore, further research on these pathogens and their role in human and animal diseases is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.