Under PCT guidance, antibiotic use was reduced and duration of antibiotic treatment was shortened in low-risk outpatients with CAP, without apparent harm.
AimTo seek accurate and credible correlation manner between gender, age, and obesity; and the severity of obstructive sleep apnea (OSA) in large-scale population.MethodsTotals of 1,975 male and 378 female OSA patients were sequentially recruited. Centralized covariant tendencies between age, body mass index (BMI), and waist hip ratio (WHR); and OSA severity, were explored in a gender-specific manner via multiple statistical analyses. The accuracies of observed correlations were further evaluated by adaptive multiple linear regression.ResultsAll of age, BMI, WHR, smoking, drinking, and OSA severity differed between males and females. BMI and WHR were positively and (approximately) linearly associated with OSA severity in both males and females. Restricted cubic spline analysis was more effective than was the Pearson correlation approach in correlating age with AHI, and provided age crossover points allowing further piecewise linear modeling for both males and females. Multiple linear regression showed that increasing age was associated with OSA exacerbation in males aged ≤40 years and in females aged 45–53 years. BMI, WHR, and diabetes were independently associated with OSA severity in males with age-group-specific pattern. In females, only BMI was associated with OSA severity at all ages.ConclusionsIn male patients, BMI and WHR are prominent risk factors for OSA exacerbation. Age and diabetes are associated with OSA severity in males of particular ages. In females, BMI is also a prominent risk factor for severe OSA, and OSA severity increased with age in the range 45–53 years.
Background/Aims: Severe acute lung injury (ALI) often develops into acute respiratory distress syndrome (ARDS). Previous studies have shown that platelet-derived growth factor (PDGF) and transforming growth factor β1 (TGFβ1) participate in the pathogenesis of ARDS by stimulation of fibroblast proliferation, leading to the development of pulmonary fibrosis. However, the exact pathways downstream of PDGF and TGFβ receptor signaling have not been completely elucidated. Method: We treated human lung fibroblasts (HLF) with PDGF, or TGFβ1, or combined, and examined the activation of p38 MAPK, p42/p44 MAPK and SMAD3. We used a specific inhibitor PD98059 to antagonize phosphorylation of p42/p44 MAPK, or used a specific inhibitor SN203580 to antagonize phosphorylation of p38 MAPK, or used a specific inhibitor SIS3 to antagonize phosphorylation of SMAD3. We then examined the effects of these inhibitors on the activation of collagen I and α-smooth muscle actin (α-SMA) induced by PDGF or TGFβ1 stimulation. Results: PDGF activated p38 MAPK and p42/p44 MAPK, but not SMAD3 in HLF cells. TGFβ1 activated p38 MAPK and SMAD3, but not p42/p44 MAPK in HLF cells. Activation of p38 MAPK by either PDGF or TGFβ1 induced α-SMA but not collagen I in HLF cells, while activation of p42/p44 MAPK by PDGF induced collagen I but not α-SMA in HLF cells. Activation of SMAD3 by TGFβ1 did not affect either collagen I or α-SMA in HLF cells. Conclusion: PDGF and TGFβ1 regulate ARDS-associated lung fibrosis through distinct signaling pathway-mediated activation of fibrosis-related proteins. Treatments with both PDGF and TGFβ1 antagonists may result in a better anti-fibrotic outcome for ALI-induced lung fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.