Carbon dots (CDs) usually emit a strong blue light and excitation wavelength dependent long wavelength lights. This significantly limits their applications because one has to use a series of different excitation light sources to get different colors and the long wavelength emissions are usually very weak. We found that one type of CDs synthesized from p-phenylenediamine could emit various long wavelength lights (green to red) independent of the excitation wavelength when dispersed in different solvents. The photoluminescence quantum yields of the same CDs were 10–35% in different solvents for different color emissions. Based on this solvent-color effect, we further mixed the same CDs with different polymers to form solid CD films for various color emissions, and these film emissions were also excitation wavelength independent. Multicolor LEDs were demonstrated with the same CDs in solution and solid film states for color displays.
Addressing vaccine compliance problems is of particular relevance and significance to public health. Despite resurgence of vaccine-preventable diseases and public awareness of vaccine importance, why is it so challenging to boost population vaccination coverage to desired levels especially in the wake of declining vaccine uptake? To understand this puzzling phenomenon, here we study how social imitation dynamics of vaccination can be impacted by the presence of imperfect vaccine, which only confers partial protection against the disease. Besides weighing the perceived cost of vaccination with the risk of infection, the effectiveness of vaccination is also an important factor driving vaccination decisions. We discover that there can exist multiple stable vaccination equilibria if vaccine efficacy is below a certain threshold. Furthermore, our bifurcation analysis reveals the occurrence of hysteresis loops of vaccination rate with respect to changes in the perceived vaccination cost as well as in the vaccination effectiveness. Moreover, we find that hysteresis is more likely to arise in spatial populations than in well-mixed populations, even for parameter choices that do not allow for bifurcation in the latter. Our work shows that hysteresis can appear as an unprecedented roadblock for the recovery of vaccination uptake, thereby helping explain the persistence of vaccine compliance problem.
By controlling the hydrolysis of alkoxysilanes, highly luminescent, transparent and flexible perovskite quantum dot (QD) gels were synthesized. The gels could maintain the structure without shrinking and exhibited excellent stability comparing to the QDs in solution. This in situ fabrication can be easily scaled up for large-area/volume gels. The gels integrated the merits of the polymer matrices to avoid the non-uniformity of light output, making it convenient for practical LED applications. Monochrome and white LEDs were fabricated using these QD gels; the LEDs exhibited broader color gamut, demonstrating better property in the backlight display application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.