The present paper addresses the experimental modeling of process parameters in laser surface texturing (LST) of medical needles. First, experiments were carried out based on Taguchi methodology. The laser process parameters considered during LST were the circumferential overlap, axial overlap and the overscan number. A second-order regression model of the machined depth for LST was developed based on the experimental results. Second, a predictive model for the machined depth based on least squares support vector machines (LS-SVM) with radial basis functions was constructed using the same experimental swatches. Grid search and leave-one-out cross-validation were used to determine the optimal parameters of the LS-SVM model. The comparison between the second-order regression model and the LS-SVM model was carried out. The experiments indicated that the LS-SVM model is capable of better predictions of the machined depth than the second-order regression model. The validity of the LS-SVM model has been checked through the creation of micro-channels with blended edges. It was found that the predicted profile was in a good agreement with the experimental profiles. The LS-SVM model can be used to predict machined geometry of the micro-channels on medical needles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.