Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO, and RbAgI/graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.
Aqueous rechargeable zinc‐metal‐based batteries are an attractive alternative to lithium‐ion batteries for grid‐scale energy‐storage systems because of their high specific capacity, low cost, eco‐friendliness, and nonflammability. However, uncontrollable zinc dendrite growth limits the cycle life by piercing the separator, resulting in low zinc utilization in both alkaline and mild/neutral electrolytes. Herein, a polyacrylonitrile coating layer on a zinc anode produced by a simple drop coating approach to address the dendrite issue is reported. The coating layer not only improves the hydrophilicity of the zinc anode but also regulates zinc‐ion transport, consequently facilitating the uniform deposition of zinc ions to avoid dendrite formation. A symmetrical cell with the polymer‐coating‐layer‐modified Zn anode displays dendrite‐free plating/stripping with a long cycle lifespan (>1100 h), much better than that of the bare Zn anode. The modified zinc anode coupled with a Mn‐doped V2O5 cathode forms a stable rechargeable full battery. This method is a facile and feasible way to solve the zinc dendrite problem for rechargeable aqueous zinc‐metal batteries, providing a solid basis for application of aqueous rechargeable Zn batteries.
The past decade has witnessed substantial advances in the synthesis of various electrode materials with threedimensional (3D) ordered macroporous or mesoporous structures (the so-called "inverse opals") for applications in electrochemical energy storage devices. This review summarizes recent advancements in 3D ordered porous (3DOP) electrode materials and their unusual electrochemical properties endowed by their intrinsic and geometric structures. The 3DOP electrode materials discussed here mainly include carbon materials, transition metal oxides (such as TiO 2 , SnO 2 , Co 3 O 4 , NiO, Fe 2 O 3 , V 2 O 5 , Cu 2 O, MnO 2 , and GeO 2), transition metal dichalcogenides (such as MoS 2 and WS 2), elementary substances (such as Si, Ge, and Au), intercalation compounds (such as Li 4 Ti 5 O 12 , LiCoO 2 , LiMn 2 O 4 , LiFePO 4), and conductive polymers (polypyrrole and polyaniline). Representative applications of these materials in Li ion batteries, aqueous rechargeable lithium batteries, Li-S batteries, Li-O 2 batteries, and supercapacitors are presented. Particular focus is placed on how ordered porous structures influence the electrochemical performance of electrode materials. Additionally, we discuss research opportunities as well as the current challenges to facilitate further contributions to this emerging research frontier.
The feasibility of assembling an Al-ion capacitor with good electrochemical performance is demonstrated. Preliminary results indicate that the fabricated Al-ion capacitor could reversibly cycle in the voltage region of 0–1.5 V and display intriguing performances with an energy density of 30 W h kg−1.
Aqueous rechargeable batteries (ARBs) have become a lively research theme due to their advantages of low cost, safety, environmental friendliness, and easy manufacturing. However, since its inception, the aqueous solution energy storage system has always faced some problems, which hinders its development, such as the narrow electrochemical stability window of water, poor percolation of electrode materials, and low energy density. In recent years, to overcome the shortcomings of the aqueous solution-based energy storage system, some very pioneering work has been done, which also provides a great inspiration for further research and development of future high-performance aqueous energy storage systems. In this paper, the latest advances in various ARBs with high voltage and high energy density are reviewed. These include aqueous rechargeable lithium, sodium, potassium, ammonium, zinc, magnesium, calcium, and aluminum batteries. Further challenges are pointed out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.