Expression of ATP-binding cassette transporter G1 (ABCG1), a molecule facilitating cholesterol efflux to HDL, is activated by liver X receptor (LXR). In this study, we investigated if inhibition of ERK1/2 can activate macrophage ABCG1 expression and functions. MEK1/2 inhibitors, PD98059 and U0126, increased ABCG1 mRNA and protein expression, and activated the natural ABCG1 promoter but not the promoter with the LXR responsive element (LXRE) deletion. Inhibition of ABCG1 expression by ABCG1 siRNA did enhance the formation of macrophage/foam cells and it attenuated the inhibitory effect of MEK1/2 inhibitors on foam cell formation. MEK1/2 inhibitors activated macrophage cholesterol efflux to HDL in vitro, and they enhanced reverse cholesterol transport (RCT) in vivo. ApoE deficient (apoE(-/-)) mice receiving U0126 treatment had reduced sinus lesions in the aortic root which was associated with activated macrophage ABCG1 expression in the lesion areas. MEK1/2 inhibitors coordinated the RXR agonist, but not the LXR agonist, to induce ABCG1 expression. Furthermore, induction of ABCG1 expression by MEK1/2 inhibitors was associated with activation of SIRT1, a positive regulator of LXR activity, and inactivation of SULT2B1 and RIP140, two negative regulators of LXR activity. Taken together, our study suggests that MEK1/2 inhibitors activate macrophage ABCG1 expression/RCT, and inhibit foam cell formation and lesion development by multiple mechanisms, supporting the concept that ERK1/2 inhibition is anti-atherogenic.
BackgroundTraditional measures of static functional connectivity may not completely re ect the dynamic neural activity of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). This study was aimed to investigate the dynamic changes of large-scale functional network connectivity in the temporal domain in PD patients with and without LID.
MethodsUsing dynamic functional network connectivity (dFNC) analysis, we evaluated 41 PD patients with LID (LID group) and 34 PD patients without LID (No-LID group), on and off their levodopa medications. Group spatial independent component analysis, sliding-window approach and k-means clusters were employed.
ResultsIn OFF phase, we found no differences between PD subgroups in temporal properties. In ON phase, compared than No-LID group, LID group occurred more frequently and dwelled longer in strongly connected State 1, characterized by strong connections between visual network (VIS) and other networks.When switching from OFF to ON phase, LID group occurred more frequently and dwelled longer in State 2 and occurred less frequently and dwelled shorter in State 3 (both states were strongly connected), while No-LID group occurred more frequently and dwelled longer in State 5 (weakly connected). Additionally, correlation analysis further demonstrated that the severity of dyskinesia was only associated with frequency of occurrence and dwell time in State 2, dominated by inferior frontal cortex in cognitive executive network (CEN), strongly connecting with sensorimotor network (SMN) and VIS.
ConclusionsUsing dFNC analysis, we found that compared to those without LID, PD patients with LID may be involved in the superexcitation of VIS, as well as interconnections between CEN and SMN, VIS, having impact on inhibition of motor circuits. The dFNC analysis might provide new insights into the neural mechanisms of LID in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.