challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top performing participating solutions. We observe that the top performing approaches utilize a blend of clinical information, data augmentation, and the ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.
Tumour antigens have attracted much attention because of their importance to cancer diagnosis, prognosis and targeted therapy. With the development of cancer genomics, the identification of tumour-specific neoantigens became possible, which is a crucial step for cancer immunotherapy. In this study, we developed software called the tumour-specific neoantigen detector for detecting cancer somatic mutations following the best practices of the genome analysis toolkit and predicting potential tumour-specific neoantigens, which could be either extracellular mutations of membrane proteins or mutated peptides presented by class I major histocompatibility complex molecules. This pipeline was beneficial to the biologist with little programmatic background. We also applied the software to the somatic mutations from the International Cancer Genome Consortium database to predict numerous potential tumour-specific neoantigens. This software is freely available from https://github.com/jiujiezz/tsnad.
Automated fundus screening is becoming a significant programme of telemedicine in ophthalmology. Instant quality evaluation of uploaded retinal images could decrease unreliable diagnosis. In this work, we propose fractal dimension of retinal vasculature as an easy, effective and explainable indicator of retinal image quality. The pipeline of our approach is as follows: utilize image pre-processing technique to standardize input retinal images from possibly different sources to a uniform style; then, an improved deep learning empowered vessel segmentation model is employed to extract retinal vessels from the pre-processed images; finally, a box counting module is used to measure the fractal dimension of segmented vessel images. A small fractal threshold (could be a value between 1.45 and 1.50) indicates insufficient image quality. Our approach has been validated on 30,644 images from four public database.
Tessellation in fundus is not only a visible feature for aged-related and myopic maculopathy but also confuse retinal vessel segmentation. The detection of tessellated images is an inevitable processing in retinal image analysis. In this work, we propose a model using convolutional neural network for detecting tessellated images. The input to the model is pre-processed fundus image, and the output indicate whether this photograph has tessellation or not. A database with 12,000 colour retinal images is collected to evaluate the classification performance. The best tessellation classifier achieves accuracy of 97.73% and AUC value of 0.9659 using pretrained GoogLeNet and transfer learning technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.