Chaotic systems with hidden attractors, infinite number of equilibrium points and different closed curve equilibrium have received much attention in the past six years. In this work, we introduce a new family of chaotic systems with different closed curve equilibrium. Using the methods of equilibrium points, phase portraits, maximal Lyapunov exponents, Kaplan–Yorke dimension, and eigenvalues, we analyze the dynamical properties of the proposed systems and extend the general knowledge of such systems.
In this work, we introduce a chaotic system with infinitely many equilibrium points laying on two closed curves passing the same point. The proposed system belongs to a class of systems with hidden attractors. The dynamical properties of the new system were investigated by means of phase portraits, equilibrium points, Poincaré section, bifurcation diagram, Kaplan–Yorke dimension, and Maximal Lyapunov exponents. The anti-synchronization of systems was obtained using the active control. This study broadens the current knowledge of systems with infinite equilibria.
We present the equilibrium point bifurcation and singularity analysis of HH model with constraints. We investigate the effect of constraints and parameters on the type of equilibrium point bifurcation. HH model with constraints has more transition sets. The Matcont toolbox software environment was used for analysis of the bifurcation points in conjunction with Matlab. We also illustrate the stability of the equilibrium points.
A transformation algorithm is constructed for finding the fixed points of nonexpansive mappings. We show that the suggested algorithm converges strongly to a fixed point of nonexpansive mappings under some different control conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.