Background Increased hepatic glycolysis and lipogenesis are characteristic of pregnancy. Objectives The present study aimed to investigate the mechanism of garcinol on the amelioration of hepatic pyruvate and triglyceride (TG) accumulation in mid-to-late pregnant rats. Methods Forty Sprague-Dawley pregnant rats (aged 9 wk, n = 10/diet) were fed a basal diet (control) or that diet plus garcinol at 100 ppm (Low Gar), 300 ppm (Mid Gar), or 500 ppm (High Gar) for 14 d. The livers were processed for Western blotting analyses and measuring enzymatic activity and pyruvate and TG concentrations. Hepatocytes from other pregnant Sprague Dawley rats were transfected with P300/CBP associating factor (PCAF) short interfering (si)RNAs; hepatocytes from nonpregnant Sprague-Dawley rats with overexpression of PCAF were treated with garcinol (5 μM). The activity and acetylation of upstream stimulatory factor (USF-1) and glycolytic enzymes were analyzed. Results Dietary garcinol significantly decreased (P < 0.05) concentrations of hepatic and plasma TG (27.1–45.8%) and total cholesterol (25.3–49.5%), plasma free fatty acids (24.4–37.8%), and hepatic pyruvate (31.5–43.5%) and lactate (33.4–65.7%) in mid-to-late pregnant rats. Garcinol promoted (P < 0.05) antioxidant capacity in the liver and plasma by 27.4–32.1%. Garcinol downregulated (P < 0.05) lipid synthesis-related enzyme expression by 30.6–85.3% and decreased (P < 0.05) glycolytic enzyme activities by 22.5–74.6% and PCAF activity by 18.6–55.4%. Transfection of PCAF siRNAs to hepatocytes of pregnant rats decreased USF-1 and glycolytic enzyme activities by PCAF; garcinol treatment downregulated (P < 0.05) the acetylation and activities of USF-1 and glycolytic enzymes by 35.6–83.7%. Conclusions Garcinol attenuates hepatic pyruvate and TG accumulation in the liver of mid-to-late pregnant rats, which may be due to downregulating the acetylation of USF-1 and the glycolytic enzymes induced by PCAF in isolated hepatocytes.
The present study was conducted to assess the effect of different processing techniques of broken rice on processing quality of pellet feed, growth performance, nutrient digestibility, blood biochemical parameters and fecal microbiota of weaned piglets. A total of 400 crossbred piglets (Duroc × Landrace × Yorkshire) with a mean initial body weight (BW) of 7.24±0.52 kg were used in a 28-day experiment. Piglets were randomly distributed to one of 4 treatment and 10 replicate pens per treatment, with 10 piglets per pen. The dietary treatments were as follows: CON, corn as the main cereal type in the dietary; BR, 70% of the corn replaced by broken rice; ETBR, 70% of the corn replaced by extruded broken rice; EPBR, 70% of the corn replaced by expanded broken rice. Extruded broken rice and expanded broken rice supplementation significantly (P<0.05) increased hardness, pellet durability index (PDI), crispness and starch gelatinization degree. Extruded broken rice and expanded broken rice generated a higher (P<0.05) average daily feed intake (ADFI), increased (P<0.05) average daily gain (ADG), decreased (P<0.05) feed conversion ratio (FCR), and lowered (P<0.05) the diarrhea rate. Piglets fed extruded broken rice displayed high apparent total tract digestibility (ATTD) levels of dry matter (P<0.05), gross energy (P<0.05), crude protein (P<0.05) and organic matter (P<0.05). In addition, extruded broken rice and expanded broken rice supplementation had increased Lactobacillus and Bifidobacterium levels in gut, whereas a lower abundance of the potential pathogens Clostridium_sensu_strictio_1 and Streptococcus was observed. Dietary supplementation of extruded broken rice and expanded broken rice failed to show significant effects on blood biochemical parameters. Combined, 70% corn substituted with broken rice failed to show significant effects. Collectively, extruded broken rice and expanded broken rice supplementation had positively enhanced the pellet quality, growth performance, nutrient digestibility, and gut microbiota of weaned piglets.
Background The conversion of skeletal muscle fiber from fast twitch to slow-twitch is crucial for sustained contractile and stretchable events, energy homeostasis, and anti-fatigue ability. The purpose of our study was to explore the mechanism and effects of garcinol on the regulation of skeletal muscle fiber type transformation. Methods Forty 21-day-old male C57/BL6J mice (n = 10/diet) were fed a control diet or a control diet plus garcinol at 100 mg/kg (Low Gar), 300 mg/kg (Mid Gar), or 500 mg/kg (High Gar) for 12 weeks. The tibialis anterior (TA) and soleus muscles were collected for protein and immunoprecipitation analyses. Results Dietary garcinol significantly downregulated (P<0.05) fast MyHC expression and upregulated (P<0.05) slow MyHC expression in the TA and soleus muscles. Garcinol significantly increased (P<0.05) the activity of PGC-1α and markedly decreased (P<0.05) the acetylation of PGC-1α. In vitro and in vivo experiments showed that garcinol decreased (P<0.05) lactate dehydrogenase activity and increased (P<0.05) the activities of malate dehydrogenase and succinic dehydrogenase. In addition, the results of immunostaining C2C12 myotubes showed that garcinol treatment increased (P<0.05) the transformation of glycolytic muscle fiber to oxidative muscle fiber by 45.9%. Garcinol treatment and p300 interference reduced (P<0.05) the expression of fast MyHC but increased (P<0.05) the expression of slow MyHC in vitro. Moreover, the acetylation of PGC-1α was significantly decreased (P<0.05). Conclusion Garcinol promotes the transformation of skeletal muscle fibers from the fast-glycolytic type to the slow-oxidative type through the p300/PGC-1α signaling pathway in C2C12 myotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.