With the development of bridge structures towards being light weight and having a large span , the overall flexibility, and, hence, wind sensitivity, of the bridge increases. Flutter is one of the pivotal factors considered in the design and operation stage for long-span cable-stayed bridges due to its devastating impact, often intrigued by relatively low instability caused by wind speed. This paper presents a reliability theory-based numerical analysis on bridge flutter stability and its influence law of key parameters using a real bridge, the Xiangshan Harbor highway cable-stayed bridge in China. The analysis starts with creating a full scale of finite element model for the bridge in service to calculate the flutter derivative and time-dominated combining rational function in order to obtain the critical-flutter wind speed, and then the aerodynamic self-excited forces on the bridge and flutter time-history response are calculated to identify the flutter critical wind speed. Further, the influence of key parameters for flutter reliability, including the stiffness of the main girder, wire breaking rate, damping ratio and cable breakage location are analyzed comprehensively to achieve the change law of critical flutter wind speed with these parameters. Considering the uncertainty of the actual parameters, these parameters are taken as random variables, and the reliability index and failure probability of bridge flutter are calculated according to their probability distribution and the Latin hypercube sampling method. On this basis, a few suggestions are put forward for flutter risk-control during the service of this cable-stayed bridge, which can further enhance the design theory for long-span flexible bridges.
In order to guarantee the running safety of the train on the bridge in the wind field the wind-proofing barrier is generally installed on the bridge, however, in the transition section where a train enters or exits the wind-proofing barrier the wind load on the car-body will suddenly change because of a sudden change of wind field. This will cause the train swaying, reduce the driving comfort, and even endanger the driving safety in severe cases. Therefore, it is necessary to optimize the wind barrier design in the transition section. Firstly the dynamic interaction model of vehicle-bridge-wind barrier coupling system under wind load is established, and the influence of sudden change of wind forces acting on the train on the driving safety is analyzed, then some concrete measures are proposed with respect to improving the driving comfort and safety and the effect of the optimizing measures is evaluated. Taking 12-span simply supported box girder bridges installing single-side 3.5 m wind barrier as an example, and optimizing the design of wind barriers in the transition section, the dynamic response and the driving safety indices of the train are obtained according to the above calculation model. The results before and after the optimization design of the wind barrier in the transition section are compared. It can be found that the sudden change of wind forces on the train induced by wind barrier has a significant effect on the lateral acceleration of the train, especially when the train is moving in and out of the wind barrier. The driving safety indices with gradual wind barriers are smaller than those without optimization design in the transition section of wind barrier.
Long-span cable-stayed bridge is a typical wind-sensitive structure because of its light weight and great flexibility. The reliability evaluation of the cable-stayed bridge under wind action becomes a key issue during bridge design and operation. In this paper, taking Xiangshan Harbor highway cable-stayed bridge in Ningbo City in China as the engineering background, ANSYS 15.0 is used to build a finite element model of this bridge to explore its aerostatic stability and influencing parameters, then the static wind reliability of this bridge is analyzed. Firstly, considering the structural nonlinearity and the nonlinearity of static wind load comprehensively, the critical wind speed of aerostatic instability of the Xiangshan Harbor cable-stayed bridge is calculated by the internal and external double iteration method. Then the influence of the initial wind attack angle, steel wire breakage rate of the stay cables, static three-component force coefficients, and cable broken position on the static wind stability of this bridge are discussed. Thus, the variation rule of the critical aerostatic instability wind speed is obtained, and the parameter that has the greatest impact on the static wind stability of the cable-stayed bridge in service is determined. Finally, considering the randomness of these key parameters, they are treated as random variables, Latin hypercube sampling (LHS) method is used to obtain samples of random variables to calculate aerostatic instability wind speed for a given sample by self-written calculation program, and on this basis, static wind reliability analysis is conducted by the checking point method, which provides strong support for the static wind risk evaluation of the existing long-span cable-stayed bridge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.