In order to guarantee the running safety of the train on the bridge in the wind field the wind-proofing barrier is generally installed on the bridge, however, in the transition section where a train enters or exits the wind-proofing barrier the wind load on the car-body will suddenly change because of a sudden change of wind field. This will cause the train swaying, reduce the driving comfort, and even endanger the driving safety in severe cases. Therefore, it is necessary to optimize the wind barrier design in the transition section. Firstly the dynamic interaction model of vehicle-bridge-wind barrier coupling system under wind load is established, and the influence of sudden change of wind forces acting on the train on the driving safety is analyzed, then some concrete measures are proposed with respect to improving the driving comfort and safety and the effect of the optimizing measures is evaluated. Taking 12-span simply supported box girder bridges installing single-side 3.5 m wind barrier as an example, and optimizing the design of wind barriers in the transition section, the dynamic response and the driving safety indices of the train are obtained according to the above calculation model. The results before and after the optimization design of the wind barrier in the transition section are compared. It can be found that the sudden change of wind forces on the train induced by wind barrier has a significant effect on the lateral acceleration of the train, especially when the train is moving in and out of the wind barrier. The driving safety indices with gradual wind barriers are smaller than those without optimization design in the transition section of wind barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.