Coherent beam combining technology applied to multiple vortex beams is a promising method to generate high-power vortex beams. We utilize the coherent combination of multiple Laguerre-Gaussian beams at the waist plane and propose theoretically a practical generation system for a high-power beam carrying orbital angular momentum by considering oblique incidence. The results demonstrate that the orbital angular momentum distribution of the combined field is similar to that of a single Laguerre-Gaussian beam within the Rayleigh length. Moreover, the combined field has relativistic intensity local spots that exhibit stable spatial propagation. The proposed system may potentially be applied to intense vortical fields, large scale nuclear fusion device, such as suppressing stimulated Raman scattering and filamentation when a laser beam propagates in plasma.
Laser–plasma instability (LPI) is one of the main obstacles to achieving predictable and reproducible fusion at high gain through laser-driven inertial confinement fusion (ICF). In this paper, for the first time, we show analytically and confirm with three-dimensional particle-in-cell simulations that angular incoherence provides suppression of the instability growth rate that is additional to and much stronger than that provided by the well-known temporal and spatial incoherence usually used in ICF studies. For the model used in our calculations, the maximum field ratio between the stimulated Raman scattering and the driving pulses drops from 0.2 for a Laguerre–Gaussian pulse with a single nonzero topological charge to 0.05 for a super light spring with an angular momentum spread and random relative phases. In particular, angular incoherence does not introduce extra undesirable hot electrons. This provides a novel method for suppressing LPI by using light with an angular momentum spread and paves the way towards a low-LPI laser system for inertial fusion energy with a super light spring of incoherence in all dimensions of time, space, and angle, and may open the door to the use of longer-wavelength lasers for inertial fusion energy.
In this study, the change in the angular momentum of a vortex beam after reflection from a relativistic flying mirror is investigated. This change is determined by performing full three-dimensional particle-in-cell simulations. The results confirm that the spin angular momentum and linear momentum carried by the reflected beam are collinear. In addition, we show that the orbital angular momentum is not collinear with the linear momentum carried by the reflected beam owing to the Doppler effect.
In this Letter, we reveal a new deflection effect in the reflection of an intense spatiotemporal optical vortex (STOV) beam. When a STOV beam with relativistic intensities (>1018 W cm−2) impacts on an overdense plasma target, the reflected beam deviates from the specular reflection direction in the incident plane. Using two-dimensional (2D) particle-in-cell simulations, we demonstrated that the typical deflection angle is of a few milliradians and can be enhanced by using a stronger STOV beam with tightly focused size and higher topological charge. Though similar to the angular Goos–Hänchen effect, however, it is worth emphasizing that the deviation induced by a STOV beam exists, even in normal incidence, revealing an essentially nonlinear effect. This novel effect is explained from the viewpoint of angular momentum conservation, as well as the Maxwell stress tensor. It is shown that an asymmetrical light pressure of the STOV beam breaks the rotational symmetry of the target surface and leads to nonspecular reflection. Unlike the shear press of an Laguerre-Gaussian beam, which only acts in oblique incidence, the deflection caused by the STOV beam exists more widely, including in normal incidence.
Coherent beam combining technology applied to multiple vortex beams is a promising method to generate high-power vortex beams. We utilize the coherent combination of multiple Laguerre–Gaussian beams at the waist plane and propose theoretically a practical generation system for a high-power beam carrying orbital angular momentum by considering oblique incidence. The results demonstrate that the orbital angular momentum distribution of the combined field is similar to that of a single Laguerre–Gaussian beam within the Rayleigh length. Moreover, the combined field has relativistic intensity local spots that exhibit stable spatial propagation. The proposed system may potentially be applied to intense vortical fields, large scale nuclear fusion device, such as suppressing stimulated Raman scattering and filamentation when a laser beam propagates in plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.