A CNNs/Ag/AgCl (defined as CNAAC) plasmonic photocatalyst with efficient photocatalytic degradation ability was obtained by depositing Ag/AgCl nanoparticles on g-CN nanosheets (CNNS). Methyl orange (MO) and rhodamine B (RhB) were selected to evaluate the photocatalytic degradation performance of the as-synthesized CNAAC plasmonic photocatalysts. Among all of the prepared CNAAC plasmonic photocatalysts, CNAAC4 showed the most efficient photocatalytic degradation performance under visible light. Recycling experiments were also performed to confirm the superior stability of CNAAC4. The synergistic effect between the surface plasmon resonance effect (SPR) of the Ag nanoparticles and the steady heterojunction of CNNs-Ag/AgCl may mainly contribute to the enhanced photocatalytic activity and high stability of CNAAC.
Organic amines, formed with the replacement of hydrogen atoms by NH3 molecules of volatile organic compounds (VOCs), possess distinctive properties of alkalinity, volatility, water-solubility and oxidability, and attract more and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.