Population dynamic of nitrifying bacteria was investigated for nitrogen removal from municipal wastewater. Nitritation was established with nitrite accumulation ratios above 85%. Quantitative PCR indicated that Nitrospira was dominant nitrite oxidizing bacteria (NOB) and Nitrobacter was few. During nitritation achieving, Nitrobacter was firstly eliminated, along with inhibition of Nitrospira bioactivities, then Nitrospira percentage declined and was finally washed out. Nitritation establishment depended on inhibiting and eliminating of NOB rather than ammonia oxidizing bacteria (AOB) enriching. This is the first study where population dynamics of Nitrobacter and Nitrospira were investigated to reveal mechanism of nitritation in a continuous-flow process. Phylogenetic analysis of AOB indicated that Nitrosomonas-like cluster and Nitrosomonas oligotropha were dominant AOB, accounting for 81.6% of amoA gene clone library. Community structure of AOB was similar to that of complete nitrification system with long hydraulic retention time, but different from that of nitritation reactor with low DO concentration.
A modified University of Cape Town (MUCT) process was used to treat real municipal wastewater with low carbon to nitrogen ratio (C/N). To our knowledge, this is the first study where the influence of nitrite accumulation on "Candidatus Accumulibacter" clade-level population structure was investigated during nitritation establishment and destruction. Real time quantitative PCR assays were conducted using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. Abundances of total "Candidatus Accumulibacter", the relative distributions and population structure of the five "Candidatus Accumulibacter" clades were characterized. Under complete nitrification, clade I using nitrate as electron acceptor was below 5% of total "Candidatus Accumulibacter". When the reactor was transformed into nitritation, clade I gradually disappeared. Clade IID using nitrite as electron acceptor for denitrifying phosphorus (P) removal was always the dominant "Candidatus Accumulibacter" throughout the operational period. This clade was above 90% on average in total "Candidatus Accumulibacter", even up to nearly 100%, which was associated with good performance of denitrifying P removal via nitrite pathway. The nitrite concentrations affected the abundance of clade IID. The P removal was mainly completed by anoxic P uptake of about 88%. The P removal efficiency clearly had a positive correlation with the nitrite accumulation ratio. Under nitritation, the P removal efficiency was 30% higher than that under complete nitrification, suggesting that nitrite was appropriate as electron acceptor for denitrifying P removal when treating carbon-limited wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.