Breast cancer ranks first among cancers affecting women’s health. Our work aims to realize the intelligence of the medical ultrasound equipment with limited computational capability, which is used for the assistant detection of breast lesions. We embed the high-computational deep learning algorithm into the medical ultrasound equipment with limited computational capability by two techniques: (1) lightweight neural network: considering the limited computational capability of ultrasound equipment, a lightweight neural network is designed, which greatly reduces the amount of calculation. And we use the technique of knowledge distillation to train the low-precision network helped with the high-precision network; (2) asynchronous calculations: consider four frames of ultrasound images as a group; the image of the first frame of each group is used as the input of the network, and the result is respectively fused with the images of the fourth to seventh frames. An amount of computation of 30 GFLO/frame is required for the proposed lightweight neural network, about 1/6 of that of the large high-precision network. After trained from scratch using the knowledge distillation technique, the detection performance of the lightweight neural network (sensitivity = 89.25%, specificity = 96.33%, the average precision [AP] = 0.85) is close to that of the high-precision network (sensitivity = 98.3%, specificity = 88.33%, AP = 0.91). By asynchronous calculation, we achieve real-time automatic detection of 24 fps (frames per second) on the ultrasound equipment. Our work proposes a method to realize the intelligence of the low-computation-power ultrasonic equipment, and successfully achieves the real-time assistant detection of breast lesions. The significance of the study is as follows: (1) The proposed method is of practical significance in assisting doctors to detect breast lesions; (2) our method provides some practical and theoretical support for the development and engineering of intelligent equipment based on artificial intelligence algorithms.
As a basic task of computer vision, image similarity retrieval is facing the challenge of large-scale data and image copy attacks. This paper presents our 3rd place solution to the matching track of Image Similarity Challenge (ISC) 2021 organized by Facebook AI. We propose a multi-branch retrieval method of combining global descriptors and local descriptors to cover all attack cases. Specifically, we attempt many strategies to optimize global descriptors, including abundant data augmentations, selfsupervised learning with a single Transformer model, overlay detection preprocessing. Moreover, we introduce the robust SIFT feature and GPU Faiss for local retrieval which makes up for the shortcomings of the global retrieval. Finally, KNN-matching algorithm is used to judge the match and merge scores. We show some ablation experiments of our method, which reveals the complementary advantages of global and local features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.