In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance of electrode materials for SIBs is closely bound up with their crystal structures and intrinsic electronic/ionic states. Apart from nanoscale design and conductive composite strategies, heteroatom doping is another effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics and thereby achieve high performance. In this review, the recent advancements in heteroatom doping for sodium ion storage of electrode materials are reviewed. Specifically, different doping strategies including nonmetal element doping (e.g., nitrogen, sulfur, phosphorous, boron, fluorine), metal element doping (magnesium, titanium, iron, aluminum, nickel, copper, etc.), and dual/triple doping (such as N–S, N–P, N–S–P) are reviewed and summarized in detail. Furthermore, various doping methods are introduced and their advantages and disadvantages are discussed. The doping effect on crystal structure and intrinsic electronic/ionic state are illustrated and the relationship with capacity and energy/power density is interrogated. Finally, future development trends in doping strategies for advanced SIBs electrodes are analyzed.
Tailored construction of advanced flexible supercapacitors (SCs) is of great importance to the development of high‐performance wearable modern electronics. Herein, a facile combined wet chemical method to fabricate novel mesoporous vanadium nitride (VN) composite arrays coupled with poly(3,4‐ethylenedioxythiophene) (PEDOT) as flexible electrodes for all‐solid‐state SCs is reported. The mesoporous VN nanosheets arrays prepared by the hydrothermal–nitridation method are composed of cross‐linked nanoparticles of 10–50 nm. To enhance electrochemical stability, the VN is further coupled with electrodeposited PEDOT shell to form high‐quality VN/PEDOT flexible arrays. Benefiting from high intrinsic reactivity and enhanced structural stability, the designed VN/PEDOT flexible arrays exhibit a high specific capacitance of 226.2 F g−1 at 1 A g−1 and an excellent cycle stability with 91.5% capacity retention after 5000 cycles at 10 A g−1. In addition, high energy/power density (48.36 Wh kg−1 at 2 A g−1 and 4 kW kg−1 at 5 A g−1) and notable cycling life (91.6% retention over 10 000 cycles) are also achieved in the assembled asymmetric flexible supercapacitor cell with commercial nickel–cobalt–aluminum ternary oxides cathode and VN/PEDOT anode. This research opens up a way for construction of advanced hybrid organic–inorganic electrodes for flexible energy storage.
Ultrathin 1T phase VS2 nanosheets were self-assembled on a flexible carbon cloth to form a binder-free electrode. The electrode exhibited a typical solid solution reaction, which is of great help in inhibiting the structural transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.