Fluorescent digital image correlation (DIC) is becoming popular for measuring 3D profiles and deformations in external surfaces. However, the simultaneous monitoring of interior layers is highly challenging due to the penetrability and refraction of light using monochromatic fluorescence. We propose a color fluorescent speckle pattern (CFSP) method for measuring the internal displacement of transparent objects based on multispectral stereo-DIC and refractive index correction. During sample fabrication, fluorescent speckle patterns exciting different colors are fabricated on both the surface and interior layers of objects. A virtual color stereo-DIC system is utilized to capture the CFSP on the surface and interior layers simultaneously from two different perspectives. Different color channels are practically equivalent to synchronized monochrome vision systems, having separate CFSP in external and internal measurements. In multispectral stereo-DIC calculation, the external surface is initially reconstructed through one channel of the system even if the surface is non-planar. Based on Snell’s law and the CFSP method, the internal layer is then reconstructed and corrected by establishing the geometry of the refractive stereo-DIC through another channel. The relative error of the thickness between two planar layers was proved to decrease from 33.4% to 0.7% after refractive index correction. Further experimental results validate the efficacy of this method for correcting the profile of the non-planar arc profile and determining the internal deformations of disc materials.
Simultaneous monitoring of overlapped multi-wing structure by stereo-digital image correlation (stereo-DIC) may be used to quantify insect motion and deformation. We propose a dual stereo-DIC system based on multispectral imaging with a polarization RGB camera. Different fluorescent speckle patterns were fabricated on wings, which emit red and blue spectra under ultraviolet light that were imaged and separated using a polarization RGB camera and auxiliary optical splitting components. The resulting dual stereo-DIC system was validated through translation experiments with transparent sheets and reconstructed overlapped insect wings (cicadas). Dynamic measurements of the Ruban artificial flier indicate the efficacy of this approach to determining real insect flight behavior.
Three-dimensional (3D) digital image correlation (DIC) based on fluorescent speckle pattern is becoming popular for measuring 3D profiles and deformations. However, the simultaneous monitoring of both the front and rear surfaces remains challenging due to the different refractive indexes of light in different media. In this study, we utilized a multispectral 3D DIC method using fluorescent speckle patterns and a 3CCD camera for the front and rear surfaces measurement of transparent objects. Fluorescent speckle patterns excited red or blue light were sprayed on the interested surfaces before measurement. Then, the red channel and blue channel sub-systems of a virtual 3D DIC system with a 3CCD camera were used to simultaneously capture both the front and back surfaces, respectively. To unify the sub coordinate systems of different channels, a calibration model of the 3CCD camera considering the sensor designed optical path difference (OPD) was proposed. Furthermore, profile reconstruction was corrected based on Snell's law to eliminate the refractive distortion caused by the different refractive indexes. The experimental results of transparent flat and curved objects showed that the accuracy of this method was significantly improved.
We propose a novel hybrid FPP-DIC technique to measure an object’s shape and deformation in 3D simultaneously by using a single 3CCD color camera, which captures the blue fringe patterns and red fluorescent speckles within the same image. Firstly, red fluorescent speckles were painted on the surface of the specimen. Subsequently, 12 computer-generated blue fringe patterns with a black background were projected onto the surface of the specimen using a DLP projector. Finally, both the reference and deformed images with three different frequencies and four shifted phases were captured using a 3CCD camera. This technique employed a three-chip configuration in which red–green–blue chips were discretely integrated in the 3CCD color camera sensor, rendering independent capture of RGB information possible. Measurement of out-of-plane displacement was carried out through the implementation of Fringe Projection Profilometry (FPP), whereas the in-plane displacement was evaluated using a 2D Digital Image Correlation (DIC) method by leveraging a telecentric-lens-based optical system. In comparison to the traditional FPP-DIC hybrid methodology, the present approach showed a lower incidence of crosstalk between the fringe patterns and speckle patterns while also offering a corrective for the coupling of the in-plane displacement and out-of-plane displacement. Experimental results for the in-plane cantilever beam and out-of-plane disk comparisons with the traditional 3D-DIC method indicated that the maximum discrepancy obtained between FPP-DIC and 3D-DIC was 0.7 μm and 0.034 mm with different magnifications, respectively, validating the effectiveness and precision of the novel proposed FPP-DIC method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.