Neuropathic pain is a worldwide health concern with poor treatment outcomes. Accumulating evidence suggests that histone hypoacetylation is involved in development and maintenance of neuropathic pain. Thus, many natural and synthetic histone deacetylase (HDACs) inhibitors were tested and exhibited a remarkable analgesic effect against neuropathic pain in animals. However, studies evaluating specific subtypes of HDACs contributing to neuropathic pain are limited. In this study, using the chronic constriction injury (CCI) rat model, we found that mRNA and protein levels of HDAC2 were increased in the lumbar spinal cord of rats after sciatic nerve injury. Intrathecal injection of TSA, a pan-HDAC inhibitor, suppressed the increase in HDAC2 protein but not mRNA, and showed a dose-dependent pain-relieving effect. By introducing HDAC2-specific shRNA into the spinal cord via a lentivirus vector, we confirmed that HDAC2 mediates mechanical and thermal hyperalgesia after nerve injury. Further examination found two essential participants in neuropathic pain in the inhibitory circuit of the central nervous system: GAD65 and KCC2 were increased in the spinal cord of CCI rats after HDAC2 knockdown. Thus, our research confirmed that HDAC2 was involved in mechanical and thermal hyperalgesia induced by peripheral nerve injury. Furthermore, GAD65 and KCC2 were the possible downstream targets of HDAC2 in pain modulation pathways.
Bone cancer pain (BCP) is one of the most common types of chronic cancer pain and its pathogenesis has not been fully understood. Long non-coding RNAs (lncRNAs) are new promising targets in the field of pain research, however, their involvements in BCP have not been reported. In the present study, we established the BCP model by implantation of Walker 256 carcinoma cells into rats’ tibial medullary cavity and performed transcriptome sequencing of the ipsilateral lumbar spinal cord to explore changes in expression profiles of lncRNA and mRNA. We identified 1220 differently expressed mRNAs (DEmRNAs) (1171 up-regulated and 49 down-regulated) and 323 differently expressed lncRNAs (DElncRNAs) (246 up-regulated and 77 down-regulated) in BCP model, among which 10 DEmRNAs (5 up-regulated and 5 down-regulated) and 10 DElncRNAs (5 up-regulated and 5 down-regulated) were validated the expression by RT-qPCR. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on the expression of DEmRNAs and DElncRNAs, showing that they were mainly enriched in inflammatory and immunologic processes/pathways. Finally, we constructed a co-expression network and a ceRNA network of DEmRNAs and DElncRNAs to exhibit a potential regulatory mechanism of DElncRNAs, directly regulating protein coding gene expression in cis or in trans and indirectly regulating protein coding gene expression by sponging miRNA. In conclusion, our study provided a landscape of dysregulated lncRNA and mRNA in spinal cord of bone cancer pain and detected novel potential targets for treatment in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.