Capabilities for recording neural activity in behaving mammals have greatly expanded our understanding of brain function. Some of the most sophisticated approaches use light delivered by an implanted fiber-optic cable to optically excite genetically encoded calcium indicators and to record the resulting changes in fluorescence. Physical constraints induced by the cables and the bulk, size, and weight of the associated fixtures complicate studies on natural behaviors, including social interactions and movements in environments that include obstacles, housings, and other complex features. Here, we introduce a wireless, injectable fluorescence photometer that integrates a miniaturized light source and a photodetector on a flexible, needle-shaped polymer support, suitable for injection into the deep brain at sites of interest. The ultrathin geometry and compliant mechanics of these probes allow minimally invasive implantation and stable chronic operation. In vivo studies in freely moving animals demonstrate that this technology allows high-fidelity recording of calcium fluorescence in the deep brain, with measurement characteristics that match or exceed those associated with fiber photometry systems. The resulting capabilities in optical recordings of neuronal dynamics in untethered, freely moving animals have potential for widespread applications in neuroscience research.
We propose a metal–insulator–metal (MIM) waveguide with two detuned square ring resonators to achieve on-chip multiple plasmon-induced transparencies (PITs). PITs can be explained by a well-defined phase coupling that can be established between detuned resonances. For third-order detuned resonances, there is one PIT window. For second-order detuned resonances, there are one, two, or three PIT windows, depending on the detuning degree between the two square ring resonators. Electromagnetic simulation based on the finite element method is carried out to calculate the PIT transmission spectrum and electromagnetic field distribution.
We propose a structure of a metal-insulator-metal (MIM) waveguide with a stub modified by cuts. Our simulation results, conducted by the finite element method, show that the wavelengths of transmission dip vary with the position of the cuts and form the zigzag lines. A transmission line model is also presented, and it agrees with simulation results well. It is believed that our findings provide a smart way to design a plasmonic waveguide filter at the communication region based on MIM structures.
We investigate theoretically and numerically a graphene parallel-plate waveguide structure with two alternate chemical potentials (which can be realized by alternately applying two biased voltages to graphene). A plasmonic Bragg reflector can be formed in infrared range because of the alternate effective refractive indexes of SPPs propagating along graphene sheets. By introducing a defect into the Bragg reflector, and then the defect resonance mode can be formed. Thanks to the tunable permittivity of graphene by bias voltages, the central wavelength and bandwidth of SPPs stop band, and the wavelength of the defect mode can be tuned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.