Extensive pre-mRNA back-splicing generates numerous circular RNAs (circRNAs) in human transcriptome. However, the biological functions of these circRNAs remain largely unclear. Here we report that N6-methyladenosine (m6A), the most abundant base modification of RNA, promotes efficient initiation of protein translation from circRNAs in human cells. We discover that consensus m6A motifs are enriched in circRNAs and a single m6A site is sufficient to drive translation initiation. This m6A-driven translation requires initiation factor eIF4G2 and m6A reader YTHDF3, and is enhanced by methyltransferase METTL3/14, inhibited by demethylase FTO, and upregulated upon heat shock. Further analyses through polysome profiling, computational prediction and mass spectrometry reveal that m6A-driven translation of circRNAs is widespread, with hundreds of endogenous circRNAs having translation potential. Our study expands the coding landscape of human transcriptome, and suggests a role of circRNA-derived proteins in cellular responses to environmental stress.
From a large-scale screen using splicing microarrays and RT-PCR, we identified 63 alternative splicing (AS) events that are coordinated in 3 distinct temporal patterns during mouse heart development. More than half of these splicing transitions are evolutionarily conserved between mouse and chicken. Computational analysis of the introns flanking these splicing events identified enriched and conserved motifs including binding sites for CUGBP and ETR-3-like factors (CELF), muscleblind-like (MBNL) and Fox proteins. We show that CELF proteins are down-regulated >10-fold during heart development, and MBNL1 protein is concomitantly up-regulated nearly 4-fold. Using transgenic and knockout mice, we show that reproducing the embryonic expression patterns for CUGBP1 and MBNL1 in adult heart induces the embryonic splicing patterns for more than half of the developmentally regulated AS transitions. These findings indicate that CELF and MBNL proteins are determinative for a large subset of splicing transitions that occur during postnatal heart development.CUGBP and ETR-3-like factors ͉ heart development ͉ muscleblind-like ͉ splicing microarray C oordinated control of alternative splicing (AS) on a genomewide scale has the potential to drive proteome transitions with wide-ranging and critical biological consequences (1, 2). Disruption of splicing and its regulation, therefore, is implicated in disease causation and susceptibility (3). Splicing is regulated by RNAbinding proteins that bind to cis-regulatory elements near the splice sites. Some of the best-characterized splicing regulators include the serine-arginine (SR)-rich family, hnRNP proteins, and the Nova, PTB, FOX, TIA, CUGBP and ETR-3-like factors (CELF), and muscleblind-like (MBNL) families (4, 5). CELF and MBNL proteins were first characterized as factors involved in the pathogenesis of myotonic dystrophy and were subsequently shown to be direct regulators of AS (6-8). Recent advances in microarray and computational technologies have allowed comprehensive analyses of individual exons on a genome-wide scale, providing the ability to identify commonly regulated splicing events (9-12).With some exceptions (13,14), most large-scale analyses of regulated splicing have focused primarily on differences between adult tissues and tissues/cell cultures depleted for a splicing regulator rather than normal physiological transitions within a single tissue (9)(10)(11)15). Developmental transitions provide an excellent opportunity to identify and determine the roles for coordinated splicing regulation associated with normal physiological change. The vertebrate heart is particularly attractive for such analysis because it undergoes extensive remodeling to meet the demands of increased workload in the developing organism (16). In addition, the heart has relatively low cellular complexity and little cell turnover (17) so that developmental splicing transitions reflect changes occurring within individual cells to a greater extent than in many other tissues. The physiological changes ...
BACKGROUND Extracellular RNAs (exRNAs) in human body fluids are emerging as effective biomarkers for detection of diseases. Saliva, as the most accessible and noninvasive body fluid, has been shown to harbor exRNA biomarkers for several human diseases. However, the entire spectrum of exRNA from saliva has not been fully characterized. METHODS Using high-throughput RNA sequencing (RNA-Seq), we conducted an in-depth bioinformatic analysis of noncoding RNAs (ncRNAs) in human cell-free saliva (CFS) from healthy individuals, with a focus on microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and circular RNAs (circRNAs). RESULTS Our data demonstrated robust reproducibility of miRNA and piRNA profiles across individuals. Furthermore, individual variability of these salivary RNA species was highly similar to those in other body fluids or cellular samples, despite the direct exposure of saliva to environmental impacts. By comparative analysis of >90 RNA-Seq data sets of different origins, we observed that piRNAs were surprisingly abundant in CFS compared with other body fluid or intracellular samples, with expression levels in CFS comparable to those found in embryonic stem cells and skin cells. Conversely, miRNA expression profiles in CFS were highly similar to those in serum and cerebrospinal fluid. Using a customized bioinformatics method, we identified >400 circRNAs in CFS. These data represent the first global characterization and experimental validation of circRNAs in any type of extracellular body fluid. CONCLUSIONS Our study provides a comprehensive landscape of ncRNA species in human saliva that will facilitate further biomarker discoveries and lay a foundation for future studies related to ncRNAs in human saliva.
Background Although metabolic reprogramming is critical in the pathogenesis of heart failure, studies to date have focused principally on fatty acid and glucose metabolism. Contribution of amino acid metabolic regulation in the disease remains understudied. Methods and Results Transcriptomic and metabolomic analyses were performed in mouse failing heart induced by pressure-overload. Suppression of branched-chain amino acids (BCAAs) catabolic gene expression along with concomitant tissue accumulation of branched-chain α-keto acids (BCKAs) was identified as a significant signature of metabolic reprogramming in mouse failing hearts, and validated to be shared in human cardiomyopathy hearts. Molecular and genetic evidence identified the transcription factor KLF15 as a key upstream regulator of the BCAA catabolic regulation in the heart. Studies using a genetic mouse model revealed that BCAA catabolic defect promoted heart failure associated with induced oxidative stress and metabolic disturbance in response to mechanical overload. Mechanistically, elevated BCKA directly suppressed respiration and induced superoxide production in isolated mitochondria. Finally, pharmacological enhancement of branched-chain α-keto acid dehydrogenase activity significantly blunted cardiac dysfunction following pressure-overload. Conclusions BCAA catabolic defect is a metabolic hallmark of failing heart resulted from KLF15 mediated transcriptional reprogramming. BCAA catabolic defect imposes a previously unappreciated significant contribution to heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.