Polyetheretherketone (PEEK) as a popular orthopaedic implant is usually fabricated into a hierarchically porous structure for improving osteogenic activity. However, the applications are limited due to the excessively high processing temperature and uncontrollably tedious modification routes. Here, an amorphous polyaryletherketone with carboxyl groups (PAEK-COOH) is synthesized and fabricated to the hierarchically controllable porous scaffolds via a low-temperature 3D-printing process. The prepared PAEK-COOH scaffolds present controllable porous structures ranging from nano-to micro-scale, and their mechanical strengths are comparable to that of trabecular bone. More importantly, the in vitro experiments show that the nanoporous surface is conducive to promoting cellular adhesion, and carboxyl groups can induce hydroxyapatite mineralization via electrostatic interaction. The in vivo experiments demonstrate that the PAEK-COOH scaffolds offer much better osseointegration without additional active ingredients, compared to that of PEEK. Therefore, this work will not only develop a promising candidate for bone tissue engineering, but provide a viable method to design PAEK biomaterials.
PEEK had been used to fabricate artificial bones by 3D printing widely, but it expressed unsatisfactory interlayer performance of 3D printing and weak compatibility with nano hydroxyapatite(nHA) due to the limits of molecular structures. Here an amorphous poly(aryl ether ketone) for 3D bone printing, PEK-CN, was designed and synthesized via nucleophilic substitution from 4,4′-difluorobenzophenone, phenolphthalein and 2,6-dichlorobenzonitrile, which possessed much stronger interlayer strength due to van der Waals force between polar groups(−CNs). Specifically, the stronger interlayer strength resulted in lower porosity(3% with 100% infill rate) and more comparable mechanical properties(the maximum tensile strength was ∼110 MPa) to cortical bone. Importantly, PEK-CN had passed in vitro cytotoxicity testing and samples of human mandible and maxillary bones based on PEK-CN were printed by fused deposition modeling(FDM) successfully. Moreover, PEK-CN/nHA composites were obtained to enhance bioactivity of resin, and PEK-CN without limits of crystal lattices expressed excellent compatibility with nano hydroxyapatite. Our work provided a high performance resin for 3D bone printing, which would bring better solutions for artificial bone materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.