This paper introduces Helping Interdisciplinary Vocabulary Engineering for Materials Science (HIVE-4-MAT), an automatic linked data ontology application. The paper provides contextual background for materials science, shared ontology infrastructures, and knowledge extraction applications. HIVE-4-MAT’s three key features are reviewed: 1) Vocabulary browsing, 2) Term search and selection, and 3) Knowledge Extraction/Indexing, as well as the basics of named entity recognition (NER). The discussion elaborates on the importance of ontology infrastructures and steps taken to enhance knowledge extraction. The conclusion highlights next steps surveying the ontology landscape, including NER work as a step toward relation extraction (RE), and support for better ontologies.
Purpose
The output of academic literature has increased significantly due to digital technology, presenting researchers with a challenge across every discipline, including materials science, as it is impossible to manually read and extract knowledge from millions of published literature. The purpose of this study is to address this challenge by exploring knowledge extraction in materials science, as applied to digital scholarship. An overriding goal is to help inform readers about the status knowledge extraction in materials science.
Design/methodology/approach
The authors conducted a two-part analysis, comparing knowledge extraction methods applied materials science scholarship, across a sample of 22 articles; followed by a comparison of HIVE-4-MAT, an ontology-based knowledge extraction and MatScholar, a named entity recognition (NER) application. This paper covers contextual background, and a review of three tiers of knowledge extraction (ontology-based, NER and relation extraction), followed by the research goals and approach.
Findings
The results indicate three key needs for researchers to consider for advancing knowledge extraction: the need for materials science focused corpora; the need for researchers to define the scope of the research being pursued, and the need to understand the tradeoffs among different knowledge extraction methods. This paper also points to future material science research potential with relation extraction and increased availability of ontologies.
Originality/value
To the best of the authors’ knowledge, there are very few studies examining knowledge extraction in materials science. This work makes an important contribution to this underexplored research area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.