This paper introduces DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, designed to address real-world MRC. DuReader has three advantages over previous MRC datasets: (1) data sources: questions and documents are based on Baidu Search and Baidu Zhidao 1 ; answers are manually generated.(2) question types: it provides rich annotations for more question types, especially yes-no and opinion questions, that leaves more opportunity for the research community. (3) scale: it contains 200K questions, 420K answers and 1M documents; it is the largest Chinese MRC dataset so far. Experiments show that human performance is well above current state-of-the-art baseline systems, leaving plenty of room for the community to make improvements. To help the community make these improvements, both DuReader 2 and baseline systems 3 have been posted online. We also organize a shared competition to encourage the exploration of more models. Since the release of the task, there are significant improvements over the baselines.
Joint entity and relation extraction is to detect entity and relation using a single model. In this paper, we present a novel unified joint extraction model which directly tags entity and relation labels according to a query word position p, i.e., detecting entity at p, and identifying entities at other positions that have relationship with the former. To this end, we first design a tagging scheme to generate n tag sequences for an n-word sentence. Then a position-attention mechanism is introduced to produce different sentence representations for every query position to model these n tag sequences. In this way, our method can simultaneously extract all entities and their type, as well as all overlapping relations. Experiment results show that our framework performances significantly better on extracting overlapping relations as well as detecting long-range relation, and thus we achieve state-of-the-art performance on two public datasets.
Existed pre-training methods either focus on single-modal tasks or multi-modal tasks, and cannot effectively adapt to each other. They can only utilize single-modal data (i.e., text or image) or limited multi-modal data (i.e., image-text pairs). In this work, we propose a UNIfied-MOdal pre-training architecture, namely UNIMO, which can effectively adapt to both single-modal and multi-modal understanding and generation tasks. Large scale of free text corpus and image collections are utilized to improve the capability of visual and textual understanding, and crossmodal contrastive learning (CMCL) is leveraged to align the textual and visual information into a unified semantic space, over a corpus of image-text pairs augmented with related images and texts. With the help of rich non-paired single-modal data, our model is able to learn more generalizable representations, by allowing textual knowledge and visual knowledge to enhance each other in the unified semantic space. The experimental results show that UNIMO greatly improves the performance of several singlemodal and multi-modal downstream tasks. Our code and pre-trained models are public at https:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.