A thin filament stimulated by Ca2+ to combine with myosin is the structural basis to achieve filament sliding and muscle contraction. Though a large variety of artificial materials has been developed by mimicking muscle, the on-demand combination of the actin filament and myosin has never been precisely reproduced in polymeric systems. Herein, we show that both the combination process and the combined structure of actin filament and myosin have been mimicked to construct synergistic covalent and supramolecular polymers (CSPs). Specifically, photoirradiation as a stimulus induces the independently formed covalent polymers (CPs) and supramolecular polymers (SPs) to interact with each other through activated quadruple H-bonding. The resultant CSPs possess a unique network structure which not only facilitates the synergistic effect of CPs and SPs to afford stiff, strong, yet tough materials but also provides efficient pathways to dissipate energy with the damping capacity of the representative material being higher than 95%. Furthermore, muscle functions, for example, by becoming stiff during contraction and self-growth by training, are imitated well in our system via in situ phototriggered formation of CSP in the solid state. We hope that the fundamental understanding gained from this work will promote the development of synergistic CSP systems with emergent functions and applications by mimicking the principle of muscle movements.
Crosslinking plays a crucial role in determining mechanical properties of polymer materials. Although various crosslinks based on covalent or noncovalent bonds have been adopted, it remains an enormous challenge to develop a crosslink which could endow corresponding polymer network with robust yet dynamic properties. Herein, we report a crosslink simultaneously having dynamic property and woven geometry, and the polymer network with woven crosslinks (WPN) could integrate the merits of covalent polymer network (CPN) and supramolecular polymer network (SPN). In specific, the WPN not only exhibits comparable stiffness, strength, elastic recovery, and anti‐fatigue property to those of CPN, but also possesses decent mechanical adaptivity and ductility, similar to those of SPN. Particularly, its toughness and puncture resistance are much superior to those of the others. Besides, the dynamicity of woven crosslink also imparts good performances of self‐healing and processability to WPN.
Fast deformation of entangled melts is known to cause chain stretching due to affinelike straining of the entanglement network. Since the chain deformation may also result in perturbations of covalent bond angles and bond length, there are always possible enthalpic effects. In this study, we first subject polystyrene and PMMA of different molecular weights to either uniaxial melt extension or planar extension and subsequently impose rapid thermal quenching to preserve the chain deformation. Then, such pre-melt-deformed samples are annealed at various temperatures below the glass transition temperature Tg. During annealing, these samples can undergo appreciable contraction on a time scale much shorter than the alpha relaxation time. Significant retractive stress is observed when such contracting samples are held fixed during the annealing. The stress level can be nearly as high as the Cauchy stress produced during melt stretching. These observations not only allowed us to investigate glassy chain dynamics as well as the molecular nature of mechanical stress but may also suggest that pre-melt-stretched polymers can cause segmental mobilization in the glassy state. The available evidence indicates that the retractive stress is enthalpic in origin, associated with the conformational distortion at the bond level produced by melt stretching.
Supramolecular polymer networks (SPNs) demonstrate great potential in the development of smart materials owing to their attractive dynamic properties. However, as they suffer from the inherent weak bonding of most noncovalent cross‐links, it remains a significant challenge to construct SPNs with outstanding mechanical performance. Herein, we exploit the cryptand/paraquat host‐guest recognition motifs as cross‐links to prepare a class of highly strong and tough SPNs. Unlike those supramolecular cross‐links with relatively weak binding abilities, the cryptand‐based host‐guest interactions have a high association constant and steady complexing structure, which effectively stabilizes the network and resists mechanical deformation under external force. Such favorable structural stability endows our SPNs with greatly enhanced mechanical performance, compared with the control‐1 cross‐linked by the weakly complexed crown ether/secondary ammonium salt motif (tensile strength: 21.1±0.5 vs 2.8±0.1 MPa; Young's modulus: 102.6±4.8 vs 2.1±0.3 MPa; toughness: 90.4±2.0 vs 10.8±0.6 MJ m−3). Moreover, our SPNs also retain abundant dynamic properties including good abilities in energy dissipation, reprocessability, and stimuli‐responsiveness. These findings provide novel insights into the preparation of SPNs with enhanced mechanical properties, and promote the development of high‐performance intelligent supramolecular materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.