Partial differential equations (PDEs) are a useful tool for modeling spatiotemporal dynamics of ecological processes. However, as an ecological process evolves, we need statistical models that can adapt to changing dynamics as new data are collected. We developed a model that combines an ecological diffusion equation and logistic growth to characterize colonization processes of a population that establishes long‐term equilibrium over a heterogeneous environment. We also developed a homogenization strategy to statistically upscale the PDE for faster computation and adopted a hierarchical framework to accommodate multiple data sources collected at different spatial scales. We highlighted the advantages of using a logistic reaction component instead of a Malthusian component when population growth demonstrates asymptotic behavior. As a case study, we demonstrated that our model improves spatiotemporal abundance forecasts of sea otters in Glacier Bay, Alaska. Furthermore, we predicted spatially varying local equilibrium abundances as a result of environmentally driven diffusion and density‐regulated growth. Integrating equilibrium abundances over the study area in our application enabled us to infer the overall carrying capacity of sea otters in Glacier Bay, Alaska.
Background Reintroducing predators is a promising conservation tool to help remedy human-caused ecosystem changes. However, the growth and spread of a reintroduced population is a spatiotemporal process that is driven by a suite of factors, such as habitat change, human activity, and prey availability. Sea otters (Enhydra lutris) are apex predators of nearshore marine ecosystems that had declined nearly to extinction across much of their range by the early 20th century. In Southeast Alaska, which is comprised of a diverse matrix of nearshore habitat and managed areas, reintroduction of 413 individuals in the late 1960s initiated the growth and spread of a population that now exceeds 25,000. Methods Periodic aerial surveys in the region provide a time series of spatially-explicit data to investigate factors influencing this successful and ongoing recovery. We integrated an ecological diffusion model that accounted for spatially-variable motility and density-dependent population growth, as well as multiple population epicenters, into a Bayesian hierarchical framework to help understand the factors influencing the success of this recovery. Results Our results indicated that sea otters exhibited higher residence time as well as greater equilibrium abundance in Glacier Bay, a protected area, and in areas where there is limited or no commercial fishing. Asymptotic spread rates suggested sea otters colonized Southeast Alaska at rates of 1–8 km/yr with lower rates occurring in areas correlated with higher residence time, which primarily included areas near shore and closed to commercial fishing. Further, we found that the intrinsic growth rate of sea otters may be higher than previous estimates suggested. Conclusions This study shows how predator recolonization can occur from multiple population epicenters. Additionally, our results suggest spatial heterogeneity in the physical environment as well as human activity and management can influence recolonization processes, both in terms of movement (or motility) and density dependence.
A suite of statistical methods are used to study animal movement. Most of these methods treat animal telemetry data in one of three ways: as discrete processes, as continuous processes, or as point processes. We briefly review each of these approaches and then focus in on the latter. In the context of point processes, so-called resource selection analyses are among the most common way to statistically treat animal telemetry data. However, most resource selection analyses provide inference based on approximations of point process models. The forms of these models have been limited to a few types of specifications that provide inference about relative resource use and, less commonly, probability of use. For more general spatio-temporal point process models, the most common type of analysis often proceeds with a data augmentation approach that is used to create a binary data set that can be analyzed with conditional logistic regression. We show that the conditional logistic regression likelihood can be generalized to accommodate a variety of alternative specifications related to resource selection. We then provide an example of a case where a spatio-temporal point process model coincides with that implied by a mechanistic model for movement expressed as a partial differential equation derived from first principles of movement. We demonstrate that inference from this form of point process model is intuitive (and could be useful for management and conservation) by analyzing a set of telemetry data from a mountain lion in Colorado, USA, to understand the effects of spatially explicit environmental conditions on movement behavior of this species.
Time‐series data offer wide‐ranging opportunities to test hypotheses about the physical and biological factors that influence species abundances. Although sophisticated models have been developed and applied to analyze abundance time series, they require information about species detectability that is often unavailable. We propose that in many cases, simpler models are adequate for testing hypotheses. We consider three relatively simple regression models for time series, using simulated and empirical (fish and mammal) datasets. Model A is a conventional generalized linear model of abundance, model B adds a temporal autoregressive term, and model C uses an estimate of population growth rate as a response variable, with the option of including a term for density dependence. All models can be fit using Bayesian and non‐Bayesian methods. Simulation results demonstrated that model C tended to have greater support for long‐lived, lower‐fecundity organisms (K life‐history strategists), while model A, the simplest, tended to be supported for shorter‐lived, high‐fecundity organisms (r life‐history strategists). Analysis of real‐world fish and mammal datasets found that models A, B, and C each enjoyed support for at least some species, but sometimes yielded different insights. In particular, model C indicated effects of predictor variables that were not evident in analyses with models A and B. Bayesian and frequentist models yielded similar parameter estimates and performance. We conclude that relatively simple models are useful for testing hypotheses about the factors that influence abundance in time‐series data, and can be appropriate choices for datasets that lack the information needed to fit more complicated models. When feasible, we advise fitting datasets with multiple models because they can provide complementary information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.