Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many of the statistical methods used to account for autocorrelation can be viewed as regression models that include basis functions.Understanding the concept of basis functions enables ecologists to modify commonly used ecological models to account for autocorrelation, which can improve inference and predictive accuracy. Understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of multicollinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.
Checking that models adequately represent data is an essential component of applied statistical inference. Ecologists increasingly use hierarchical Bayesian statistical models in their research. The appeal of this modeling paradigm is undeniable, as researchers can build and fit models that embody complex ecological processes while simultaneously accounting for observation error. However, ecologists tend to be less focused on checking model assumptions and assessing potential lack of fit when applying Bayesian methods than when applying more traditional modes of inference such as maximum likelihood. There are also multiple ways of assessing the fit of Bayesian models, each of which has strengths and weaknesses. For instance, Bayesian P values are relatively easy to compute, but are well known to be conservative, producing P values biased toward 0.5. Alternatively, lesser known approaches to model checking, such as prior predictive checks, cross‐validation probability integral transforms, and pivot discrepancy measures may produce more accurate characterizations of goodness‐of‐fit but are not as well known to ecologists. In addition, a suite of visual and targeted diagnostics can be used to examine violations of different model assumptions and lack of fit at different levels of the modeling hierarchy, and to check for residual temporal or spatial autocorrelation. In this review, we synthesize existing literature to guide ecologists through the many available options for Bayesian model checking. We illustrate methods and procedures with several ecological case studies including (1) analysis of simulated spatiotemporal count data, (2) N‐mixture models for estimating abundance of sea otters from an aircraft, and (3) hidden Markov modeling to describe attendance patterns of California sea lion mothers on a rookery. We find that commonly used procedures based on posterior predictive P values detect extreme model inadequacy, but often do not detect more subtle cases of lack of fit. Tests based on cross‐validation and pivot discrepancy measures (including the “sampled predictive P value”) appear to be better suited to model checking and to have better overall statistical performance. We conclude that model checking is necessary to ensure that scientific inference is well founded. As an essential component of scientific discovery, it should accompany most Bayesian analyses presented in the literature.
Ecological invasions and colonizations occur dynamically through space and time. Estimating the distribution and abundance of colonizing species is critical for efficient management or conservation. We describe a statistical framework for simultaneously estimating spatiotemporal occupancy and abundance dynamics of a colonizing species. Our method accounts for several issues that are common when modeling spatiotemporal ecological data including multiple levels of detection probability, multiple data sources, and computational limitations that occur when making fine-scale inference over a large spatiotemporal domain. We apply the model to estimate the colonization dynamics of sea otters (Enhydra lutris) in Glacier Bay, in southeastern Alaska.
Abstract. Checking that models adequately represent data is an essential component
Partial differential equations (PDEs) are a useful tool for modeling spatiotemporal dynamics of ecological processes. However, as an ecological process evolves, we need statistical models that can adapt to changing dynamics as new data are collected. We developed a model that combines an ecological diffusion equation and logistic growth to characterize colonization processes of a population that establishes long‐term equilibrium over a heterogeneous environment. We also developed a homogenization strategy to statistically upscale the PDE for faster computation and adopted a hierarchical framework to accommodate multiple data sources collected at different spatial scales. We highlighted the advantages of using a logistic reaction component instead of a Malthusian component when population growth demonstrates asymptotic behavior. As a case study, we demonstrated that our model improves spatiotemporal abundance forecasts of sea otters in Glacier Bay, Alaska. Furthermore, we predicted spatially varying local equilibrium abundances as a result of environmentally driven diffusion and density‐regulated growth. Integrating equilibrium abundances over the study area in our application enabled us to infer the overall carrying capacity of sea otters in Glacier Bay, Alaska.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.