Fine-grained visual recognition is challenging because it highly relies on the modeling of various semantic parts and fine-grained feature learning. Bilinear pooling based models have been shown to be effective at fine-grained recognition, while most previous approaches neglect the fact that inter-layer part feature interaction and fine-grained feature learning are mutually correlated and can reinforce each other. In this paper, we present a novel model to address these issues. First, a crosslayer bilinear pooling approach is proposed to capture the inter-layer part feature relations, which results in superior performance compared with other bilinear pooling based approaches. Second, we propose a novel hierarchical bilinear pooling framework to integrate multiple cross-layer bilinear features to enhance their representation capability. Our formulation is intuitive, efficient and achieves state-of-the-art results on the widely used fine-grained recognition datasets.
Computational fluid dynamics (CFD) simulation is a core component of wind engineering assessment for urban planning and architecture. CFD simulations require clean and low-complexity models. Existing modeling methods rely on static data from geographic information systems along with manual efforts. They are extraordinarily time-consuming and have difficulties accurately incorporating the up-to-date information of a target area into the flow model. This paper proposes an automated simulation framework with superior modeling efficiency and accuracy. The framework adopts aerial point clouds and an integrated two-dimensional and three-dimensional (3D) deep learning technique, with four operational modules: data acquisition and preprocessing, point cloud segmentation based on deep learning, geometric 3D reconstruction, and CFD simulation. The advantages of the framework are demonstrated through a case study of a local area in Shenzhen, China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.