The prefrontal cortex and medial temporal lobe are particularly vulnerable to the effects of aging. The disconnection between them is suggested to be an important cause of cognitive decline in normal aging. Here, using multimodal intervention training, we investigated the functional plasticity in resting-state connectivity of these two regions in older adults. The multimodal intervention, comprised of cognitive training, Tai Chi exercise, and group counseling, was conducted to explore the regional connectivity changes in the default-mode network, as well as changes in prefrontal-based voxel-wise connectivity in the whole brain. Results showed that the intervention selectively affected resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Moreover, the strength of resting-state functional connectivity between these regions correlated with individual cognitive performance. Our results suggest that multimodal intervention could postpone the effects of aging and improve the function of the regions that are most heavily influenced by aging, as well as play an important role in preserving the brain and cognition during old age.
Late-life leisure activities protect against cognitive impairment among elderly Chinese people, and the protective effects are more profound for educated elderly.
Inhibitory control (including response inhibition and interference control) develops rapidly during the preschool period and is important for early cognitive development. This study aimed to determine the training and transfer effects on response inhibition in young children. Children in the training group (N = 20; 12 boys, mean age 4.87 ± 0.26 years) played “Fruit Ninja” on a tablet computer for 15 min/day, 4 days/week, for 3 weeks. Children in the active control group (N = 20; 10 boys, mean age 4.88 ± 0.20 years) played a coloring game on a tablet computer for 10 min/day, 1–2 days/week, for 3 weeks. Several cognitive tasks (involving inhibitory control, working memory, and fluid intelligence) were used to evaluate the transfer effects, and electroencephalography (EEG) was performed during a go/no-go task. Progress on the trained game was significant, while performance on a reasoning task (Raven’s Progressive Matrices) revealed a trend-level improvement from pre- to post-test. EEG indicated that the N2 effect of the go/no-go task was enhanced after training for girls. This study is the first to show that pure response inhibition training can potentially improve reasoning ability. Furthermore, gender differences in the training-induced changes in neural activity were found in preschoolers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.