The sprawling patterns of land development common to metropolitan areas of the US have been blamed for high levels of automobile travel, and thus for air quality problems. In response, smart growth programs-designed to counter sprawl-have gained popularity in the US. Studies show that, all else equal, residents of neighborhoods with higher levels of density, land-use mix, transit accessibility, and pedestrian friendliness drive less than residents of neighborhoods with lower levels of these characteristics. These studies have shed little light, however, on the underlying direction of causality-in particular, whether neighborhood design influences travel behavior or whether travel preferences influence the choice of neighborhood. The evidence thus leaves a key question largely unanswered: if cities use land use policies to bring residents closer to destinations and provide viable alternatives to driving, will people drive less and thereby reduce emissions? Here a quasi-longitudinal design is used to investigate the relationship between neighborhood characteristics and travel behavior while taking into account the role of travel preferences and neighborhood preferences in explaining this relationship. A multivariate analysis of crosssectional data shows that differences in travel behavior between suburban and traditional neighborhoods are largely explained by attitudes. However, a quasi-longitudinal analysis of changes in travel behavior and changes in the built environment shows significant associations, even when attitudes have been accounted for, providing support for a causal relationship.
Suburban sprawl has been widely criticized for its contribution to auto dependence. Numerous studies have found that residents in suburban neighborhoods drive more and walk less than their counterparts in traditional environments. However, most studies confirm only an association between the built environment and travel behavior, and have yet to establish the predominant underlying causal link: whether neighborhood design independently influences travel behavior or whether preferences for travel options affect residential choice. That is, residential self-selection may be at work. A few studies have recently addressed the influence of self-selection. However, our understanding of the causality issue is still immature. To address this issue, this study took into account individuals' self-selection by employing a quasi-longitudinal design and by controlling for residential preferences and travel attitudes. In particular, using data collected from 547 movers currently living in four traditional neighborhoods and four suburban neighborhoods in Northern California, we developed a Structural Equations Model to investigate the relationships among changes in the built environment, changes in auto ownership, and changes in travel behavior. The results provide some encouragement that land-use policies designed to put residents closer to destinations and provide them with alternative transportation options will actually lead to less driving and more walking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.