The rapid development of machine vision applications demands hardware that can sense and process visual information in a single monolithic unit to avoid redundant data transfer. Here, we design and demonstrate a monolithic vision enhancement chip with light-sensing, memory, digital-to-analog conversion, and processing functions by implementing a 619-pixel with 8582 transistors and physical dimensions of 10 mm by 10 mm based on a wafer-scale two-dimensional (2D) monolayer molybdenum disulfide (MoS 2 ). The light-sensing function with analog MoS 2 transistor circuits offers low noise and high photosensitivity. Furthermore, we adopt a MoS 2 analog processing circuit to dynamically adjust the photocurrent of individual imaging sensor, which yields a high dynamic light-sensing range greater than 90 decibels. The vision chip allows the applications for contrast enhancement and noise reduction of image processing. This large-scale monolithic chip based on 2D semiconductors shows multiple functions with light sensing, memory, and processing for artificial machine vision applications, exhibiting the potentials of 2D semiconductors for future electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.