Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.
Abstract. The surveillance and response system remains one of the biggest challenges to malaria elimination along the China-Myanmar border. In China, "1-3-7" approach was developed to guide elimination activities according to the National Malaria Elimination Program, which is a simplified set of targets that delineates responsibilities and actions. The time frame of the approach has been incorporated into the nationwide web-based disease reporting system: 1, case reporting within 1 day after diagnosis; 3, case investigation within 3 days; and 7, focus investigation and action within 7 days. Herein, the data on malaria cases in 2005-2014 and after the "1-3-7" implementation in 2013-2014 of the 18 counties at the China-Myanmar border are reviewed and analyzed. Results showed that the total cases decreased while the proportion of imported cases rose. The "1-3-7" was well executed, except for the "3" indicator, which was 96.3% accomplished on average in the 18 border counties, but needs to be further strengthened. More efforts are highlighted for timely and accurate case detection as well as proactive mapping of disease transmission hot spots to facilitate the elimination of border malaria.
Mosquitoes are incriminated as vectors for many crippling diseases, including malaria, West Nile fever, Dengue fever, and other neglected tropical diseases (NTDs). microRNAs (miRNAs) can interact with multiple target genes to elicit biological functions in the mosquitoes. However, characterization and function of individual miRNAs and their potential targets have not been fully determined to date. We conducted a systematic review of published literature following PRISMA guidelines. We summarize the information about miRNAs in mosquitoes to better understand their metabolism, development, and responses to microorganisms. Depending on the study, we found that miRNAs were dysregulated in a species-, sex-, stage-, and tissue/organ-specific manner. Aberrant miRNA expressions were observed in development, metabolism, host-pathogen interactions, and insecticide resistance. Of note, many miRNAs were down-regulated upon pathogen infection. The experimental studies have expanded the identification of miRNA target from the 3′ untranslated regions (UTRs) of mRNAs of mosquitoes to the 5′ UTRs of mRNAs of the virus. In addition, we discuss current trends in mosquito miRNA research and offer suggestions for future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.