Cancer metastasis accounts for the high mortality of many types of cancer. Owing to the unique advantages of high specificity and minimal invasiveness, photothermal therapy (PTT) has been evidenced with great potential in treating cancer metastasis. In this review, we outline the current approaches of PTT with respect to its application in treating metastatic cancer. PTT can be used alone, guided with multimodal imaging, or combined with the current available therapies for effective treatment of cancer metastasis. Numerous types of photothermal nanotherapeutics (PTN) have been developed with encouraging therapeutic efficacy on metastatic cancer in many preclinical animal experiments. We summarize the design and performance of various PTN in PTT alone and their combinational therapy. We also point out the lacking area and the most promising approaches in this challenging field. In conclusion, PTT or their combinational therapy can provide an essential promising therapeutic modality against cancer metastasis.
Cancer metastasis leads to high mortality of breast cancer and is difficult to treat because of the poor delivery efficiency of drugs. Herein, we report the wrapping of a drug-carrying liposome with an isolated macrophage membrane to improve delivery to metastatic sites. The macrophage membrane decoration increased cellular uptake of the emtansine liposome in metastatic 4T1 breast cancer cells and had inhibitory effects on cell viability. In vivo, the macrophage membrane enabled the liposome to target metastatic cells and produced a notable inhibitory effect on lung metastasis of breast cancer. Our results provide a biomimetic strategy via the biological properties of macrophages to enhance the medical performance of a nanoparticle in vivo for treating cancer metastasis.
In this work, hollow mesoporous silica nanoparticles (HMSNs) with three pore sizes were manufactured to control the drug release rate, and the biological roles of these HMSNs were evaluated in multidrug-resistant (MDR) cancer cells. As novel pore-size-controllable inorganic materials, HMSNs showed negligible cytotoxicity and efficient cellular uptake toward drug-sensitive MCF-7 and drug-resistant MCF-7/ADR cells. Doxorubicin (DOX)-loaded HMSNs (DMSNs) not only demonstrated effective drug loading and a pH-responsive drug release character but also exhibited pore-size-dependent and sustained drug release performance in both in vitro and intracellular drug release experiments. In addition, DMSNs exhibited pore-size-dependent anticancer activity against MCF-7/ADR cells. DMSNs with larger pore size could mediate more cellular uptake of DOX and faster intracellular drug release, which led to more intracellular drug accumulation and stronger MDR-reversal effects. The MDR-overcoming mechanism could be due to the efficient cellular uptake, P-gp inhibition, and ATP depletion. These results demonstrate that HMSNs could be a very promising drug delivery system for pore-size-controllable drug release and cancer MDR reversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.