Nowadays, it is increasingly necessary to improve the encryption and secure transmission performance of images. Therefore, in this paper, a bit-level permutation algorithm based on hyper chaos is proposed, with a newly constructed 5-D hyperchaotic system combined with DNA sequence encryption to achieve bit-wide permutation of plaintexts. The proposed 5-D hyperchaotic system has good chaotic dynamics, combining hyperchaotic sequence with bit-level permutation to enhance the pseudo-randomness of the plaintext image. We adopt a scheme of decomposing the plaintext color image into three matrices of R, G, and B, and performing block operations on them. The block matrix was DNA encoded, operated, and decoded. The DNA operation was also determined by the hyperchaotic sequence, and finally generated a ciphertext image. The result of the various security analyses prove that the ciphertext images generated by the algorithm have good distribution characteristics, which can not only resist differential attacks, but also have the advantages of large cryptographic space.
Problems such as insufficient key space, lack of a one-time pad, and a simple encryption structure may emerge in existing encryption schemes. To solve these problems, and keep sensitive information safe, this paper proposes a plaintext-related color image encryption scheme. Firstly, a new five-dimensional hyperchaotic system is constructed in this paper, and its performance is analyzed. Secondly, this paper applies the Hopfield chaotic neural network together with the novel hyperchaotic system to propose a new encryption algorithm. The plaintext-related keys are generated by image chunking. The pseudo-random sequences iterated by the aforementioned systems are used as key streams. Therefore, the proposed pixel-level scrambling can be completed. Then the chaotic sequences are utilized to dynamically select the rules of DNA operations to complete the diffusion encryption. This paper also presents a series of security analyses of the proposed encryption scheme and compares it with other schemes to evaluate its performance. The results show that the key streams generated by the constructed hyperchaotic system and the Hopfield chaotic neural network improve the key space. The proposed encryption scheme provides a satisfying visual hiding result. Furthermore, it is resistant to a series of attacks and the problem of structural degradation caused by the simplicity of the encryption system’s structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.