Zirconium dioxide provides an exceptional prototype material for studying the redistribution of the polaron holes and its magnetic coupling with their nearby anions owning to the difference oxygen binding behavior in the monoclinic phase. Here, we perform a comprehensive study of the p-electron magnetism in the nitrogen doped 2 × 2 × 2 monoclinic ZrO2 based on spin-polarized density functional theory. Nitrogen substitutions make the system display half-metallic properties, and the origin of room temperature ferromagnetism ascribes to the p-p coupling interaction between N 2p and the host 2p states. The charge density difference and Mülliken population analyses provide evidences of charge redistributions. Our results reveal that the polaron transfer may alter the magnetic properties and it is greatly facilitated ferromagnetic coupling if the polaron holes are localized around a single anion dopant.
A number of zinc oxide (ZnO) films are deposited on silicon substrates using the magnetron sputtering method. After undergoing thermal treatment under different conditions, those films exhibit hexagonal wurtzite structures and different photoluminescent characteristics. Besides the notable ultraviolet emission, which is related to the free exciton effect, a distinct blue fluorescence around 475 nm is found in some special samples. The blue photoluminescence emission of the ZnO film is believed to be caused by oxygen vacancies.
The mechanism of ferromagnetic ordering in ZrO x film is investigated by both experimental observation and theoretical calculation. Magnetic measurements reveal that the magnetic properties can be adjusted from diamagnetism to ferromagnetism by varying the oxygen stoichiometry. We find that oxygen-rich defects can be responsible for the observed magnetic properties by taking the measurements of x-ray photoelectron spectroscopy and room temperature photoluminescence spectra. Density functional theory calculations further confirm that the ferromagnetic order is mainly driven by the exchange interaction between the oxygen antisites and the neighboring anion atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.