Atherosclerosis (AS) in diabetic patients is often associated with low stability, which might be largely attributed to unfavorable macrophage polarization and increased inflammatory response induced by hyperglycaemia. Ginsenoside Rg3 is one of the main active principles of Panax Ginseng, which has been reported to be a natural ligand of peroxisome proliferator-activated receptor-gamma (PPARγ), a key nuclear transcriptional factor involved in inflammation and macrophage differentiation. However, it remains unclear if Rg3 could exert protective effects on plaque stability in diabetes. In this study, we investigated the role of ginsenoside 20(S)-Rg3 in macrophage polarization and AS plaque stability using advanced glycation end products-treated macrophages and diabetic AS mice models. In vitro, advanced glycation end products (AGEs) treatment promoted the expression of proinflammatory molecules and M1 surface markers, whereas 20(S)-Rg3 could reverse the M1 polarization to the M2 phenotype. In vivo, the administration of 20(S)-Rg3 promoted AS lesion stability and reduced the plaque burden, accompanied by increased M2 macrophages and reduced M1 macrophages. In addition, PPARγ antagonist GW9662 co-administration mostly blocked these effects, suggesting the important role of PPARγ pathways in mediating 20(S)-Rg3 effects in macrophage polarization and atherosclerosis progression. Together, these results demonstrated an immunomodulatory role of ginsenoside 20(S)-Rg3 in promoting macrophages to a profile of the M2 type through PPARγ-dependent mechanisms, and indicated a potential role of 20(S)-Rg3 in the prevention and treatment of diabetic atherosclerosis.
BackgroundVascular calcification and increased cardiovascular morbidity and mortality are closely related in patients with end‐stage renal disease and diabetes mellitus. Specific protein 1 (Sp1) is a transactivation molecule that plays a crucial role in the regulation of apoptosis, fibrosis, angiogenesis, and other pathological disorders. There is evidence that specific protein 1 (Sp1) directly stimulates the transcription of bone morphogenetic protein 2 (BMP2) and that BMP2 plays a key role in the calcification process in the BMP2–expressing F9 cell model system. Here, we investigated whether Sp1 plays an important role in vascular calcification and its potential regulatory mechanism in vascular calcification.Methods and ResultsIn this study, vascular calcification was induced in male Wistar rats by administration of nicotine (25 mg/kg) and vitamin D3 (300 000 IU/kg). These rats were randomly selected for treatment with adenovirus harboring Sp1 knockdown gene or empty virus. The mechanism of Sp1 in vascular smooth muscle cells cultured in high phosphate medium was studied. Based on our findings, the Sp1 gene silencing or inhibition improved calcium deposition, which was partly achieved by inhibiting phenotype switch, apoptosis, and matrix vesicle release of vascular smooth muscle cells. Moreover, Sp1 can activate BMP2 transcription by binding to the Sp1‐binding element of the BMP2 promoter.ConclusionsOverall, elevated Sp1 exerts a pro‐apoptotic effect, promoting BMP2 transcription and further accumulating vascular calcification. Proper and timely regulation of Sp1 expression may be a potential strategy for treatment of aging, end‐stage renal disease, and diabetic‐related macrovascular disease treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.